Guide placement by a robotic device

    公开(公告)号:US10967501B1

    公开(公告)日:2021-04-06

    申请号:US16182733

    申请日:2018-11-07

    Abstract: Example implementations may relate to providing a dynamic jig in a three-dimensional (3D) coordinate system. Specifically, a control system may (i) receive task data specifying a manipulation of one or more parts at a specified location; (ii) determine: (a) one or more work surfaces and (b) a first position of each of the one or more work surfaces, such that the one or more work surfaces collectively provide a jig to facilitate the specified manipulation of the parts; (iii) a plurality of guide end effectors that are positionable by one or more robotic devices such that the end effectors provide the work surfaces at the respectively determined first positions; and (iv) operate the one or more robotic devices to position the guide end effectors to provide the one or more work surfaces at the respectively determined first positions, thereby forming the jig from the one or more work surfaces.

    Automatic Generation of Toolpaths
    12.
    发明申请

    公开(公告)号:US20180348730A1

    公开(公告)日:2018-12-06

    申请号:US15611769

    申请日:2017-06-01

    Abstract: Example implementations relate to generating instructions for robotic tasks. A method may involve determining task information of a path-based task by an end-effector on an object, where the task information includes (i) at least one task parameter, and (ii) a nominal representation of the object. The method also involves based on the task information, determining one or more parametric instructions for the end-effector to perform the task, where the one or more parametric instructions indicate a toolpath for the end-effector to follow when performing the task. The method also involves generating, based on sensor data, an observed representation of the object, and comparing the observed and the nominal representations. The method further involves based on the comparison, mapping the parametric instructions to the observed representation of the object. The method yet further involves sending the mapped instructions to the end-effector to cause the robotic device to perform the task.

    Methods and Systems for Establishing and Maintaining a Pre-Build Relationship

    公开(公告)号:US20180290305A1

    公开(公告)日:2018-10-11

    申请号:US15481909

    申请日:2017-04-07

    CPC classification number: B25J9/1669 B25J9/163 Y10S901/02

    Abstract: Described herein are methods and systems to establish a pre-build relationship in a model that specifies a first parameter for a first feature of a structure and a second parameter for a second feature of the structure. In particular, a computing system may receive data specifying a pre-build relationship that defines a build value of the first parameter in terms of a post-build observed value of the second parameter. During production of the structure, the computing system may determine the post-build observed value of the second parameter and, based on the determined post-build observed value, may determine the build value of the first parameter in accordance with the pre-build relationship. After determining the build value, the computing system may then transmit, to a robotic system, an instruction associated with production of the first feature by the robotic system, with that instruction specifying the determined build value of the first parameter.

    Kinematically Linked Optical Components for Light Redirection

    公开(公告)号:US20180119911A1

    公开(公告)日:2018-05-03

    申请号:US15853919

    申请日:2017-12-25

    Abstract: Embodiments described herein may relate to a system comprising a plurality of optical elements, comprising at least a first optical element and one or more secondary optical elements, a heliostat comprising the first optical element, where the heliostat is operable to move the first optical element to continuously reflect light from a non-stationary light source in a beam towards a first of the secondary optical elements, and where the secondary optical elements are arranged to re-direct the reflected beam of light towards an illumination target. The system further includes a controller configured to receive position data indicative of the position of the non-stationary light source over time, and in response to the position data, control at least the heliostat to continuously direct the beam of light towards the first of the secondary optical elements, such that the beam of light is continuously re-directed towards the illumination target.

    Kinematically linked optical components for light redirection

    公开(公告)号:US10801684B2

    公开(公告)日:2020-10-13

    申请号:US15853919

    申请日:2017-12-25

    Abstract: Embodiments described herein may relate to a system comprising a plurality of optical elements, comprising at least a first optical element and one or more secondary optical elements, a heliostat comprising the first optical element, where the heliostat is operable to move the first optical element to continuously reflect light from a non-stationary light source in a beam towards a first of the secondary optical elements, and where the secondary optical elements are arranged to re-direct the reflected beam of light towards an illumination target. The system further includes a controller configured to receive position data indicative of the position of the non-stationary light source over time, and in response to the position data, control at least the heliostat to continuously direct the beam of light towards the first of the secondary optical elements, such that the beam of light is continuously re-directed towards the illumination target.

    Methods and systems for establishing and maintaining a pre-build relationship

    公开(公告)号:US10307908B2

    公开(公告)日:2019-06-04

    申请号:US15481909

    申请日:2017-04-07

    Abstract: Described herein are methods and systems to establish a pre-build relationship in a model that specifies a first parameter for a first feature of a structure and a second parameter for a second feature of the structure. In particular, a computing system may receive data specifying a pre-build relationship that defines a build value of the first parameter in terms of a post-build observed value of the second parameter. During production of the structure, the computing system may determine the post-build observed value of the second parameter and, based on the determined post-build observed value, may determine the build value of the first parameter in accordance with the pre-build relationship. After determining the build value, the computing system may then transmit, to a robotic system, an instruction associated with production of the first feature by the robotic system, with that instruction specifying the determined build value of the first parameter.

    Guide placement by a robotic device

    公开(公告)号:US10150213B1

    公开(公告)日:2018-12-11

    申请号:US15221555

    申请日:2016-07-27

    Abstract: Example implementations may relate to providing a dynamic jig in a three-dimensional (3D) coordinate system. Specifically, a control system may (i) receive task data specifying a manipulation of one or more parts at a specified location; (ii) determine: (a) one or more work surfaces and (b) a first position of each of the one or more work surfaces, such that the one or more work surfaces collectively provide a jig to facilitate the specified manipulation of the parts; (iii) a plurality of guide end effectors that are positionable by one or more robotic devices such that the end effectors provide the work surfaces at the respectively determined first positions; and (iv) operate the one or more robotic devices to position the guide end effectors to provide the one or more work surfaces at the respectively determined first positions, thereby forming the jig from the one or more work surfaces.

    Planning and Adapting Projects Based on a Buildability Analysis

    公开(公告)号:US20180348742A1

    公开(公告)日:2018-12-06

    申请号:US15611777

    申请日:2017-06-01

    Abstract: Disclosed herein is a worksite automation process that involves: generating a first sequence of tasks to build the product according to a model. The process further involves causing one or more robotic devices to build the product by beginning to execute the first sequence of tasks. Further, during the execution of the first sequence of tasks, performing a buildability analysis to determine a feasibility of completing the product by executing the first sequence of tasks. Based on the analysis, determining that it is not feasible to complete the product by executing the first sequence of tasks, and in response, generating a second sequence of tasks to complete the product according to the model. Then, causing the one or more robotic devices to continue building the product by beginning to execute the second sequence of tasks.

    Kinematically linked optical components for light redirection

    公开(公告)号:US09857040B1

    公开(公告)日:2018-01-02

    申请号:US14831259

    申请日:2015-08-20

    Abstract: Embodiments described herein may relate to a system comprising a plurality of optical elements, comprising at least a first optical element and one or more secondary optical elements, a heliostat comprising the first optical element, where the heliostat is operable to move the first optical element to continuously reflect light from a non-stationary light source in a beam towards a first of the secondary optical elements, and where the secondary optical elements are arranged to re-direct the reflected beam of light towards an illumination target. The system further includes a controller configured to receive position data indicative of the position of the non-stationary light source over time, and in response to the position data, control at least the heliostat to continuously direct the beam of light towards the first of the secondary optical elements, such that the beam of light is continuously re-directed towards the illumination target.

Patent Agency Ranking