Abstract:
In one embodiment of the invention, a MEMS structure includes a first electrode, a second electrode, and a mobile element. The first electrode is coupled to a first voltage source. The second electrode is coupled to a second voltage source. The mobile element includes a third electrode coupled to a third voltage source. A steady voltage difference between the first electrode and the third electrode is used to tune the natural frequency of the structure to a scanning frequency of an application. An oscillating voltage difference between the second electrode and the third electrode at the scanning frequency of the application is used to oscillate the mobile element. In one embodiment, the mobile unit is a mirror.
Abstract:
A micro-electro-mechanical system (MEMS) device includes a mirror having a top surface with trenches, a beam connected to the mirror, rotational comb teeth connected to the beam, and one or more springs connecting the beam to a bonding pad. The mirror can have a bottom surface for reflecting light. The mirror can include a top flange and a bottom flange joined by a web, wherein the top and the bottom flanges form the top and the bottom surfaces, respectively. The rotational comb teeth can have a tapered shape. Stationary comb teeth can be interdigitated with the rotational comb teeth either in-plane or out-of-plane. Steady or oscillating voltage difference between the rotational and the stationary comb teeth can be used to oscillate or tune the mirror.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes (1) a mirror, (2) a first group of spring elements coupled to one half of the mirror, (3) a first beam coupled to the first group of spring elements, (4) a first spring coupled to the first beam, and (5) a first stationary pad coupled to the first spring. The device further includes (6) a second group of spring elements coupled in parallel to another half of the mirror, (7) a second beam coupled to the second group of spring elements, (8) a second spring coupled to the second beam, (9) and a second stationary pad coupled to the second spring. The device further includes a third beam that rigidly interconnects the first and the second beams so they rotate the mirror in unison.
Abstract:
A mirror device includes a mirror, an anchor, and a spring coupling the mirror to the anchor. The anchor and/or mirror can define one or more rows of holes adjacent to the coupling location of the spring. The natural frequency of the device can be adjusted by removing material between the perimeter of the mirror/anchor and the outermost holes, and between adjacent holes in the same row. Another mirror device includes a mirror, anchors, and springs coupling the mirror to the anchors. The natural frequency of the device can be adjusted by decoupling one or more springs coupling the mirror to the anchors. The mirror of both devices can includes one or more sacrificial portions. The natural frequencies of the both devices can also be adjusted by trimming the sacrificial portions.
Abstract:
A micro-electro-mechanical system (MEMS) device includes a mirror having a top surface with trenches, a beam connected to the mirror, rotational comb teeth connected to the beam, and one or more springs connecting the beam to a bonding pad. The mirror can have a bottom surface for reflecting light. The mirror can include a top flange and a bottom flange joined by a web, wherein the top and the bottom flanges form the top and the bottom surfaces, respectively. The rotational comb teeth can have a tapered shape. Stationary comb teeth can be interdigitated with the rotational comb teeth either in-plane or out-of-plane. Steady or oscillating voltage difference between the rotational and the stationary comb teeth can be used to oscillate or tune the mirror.
Abstract:
In one embodiment of the invention, a MEMS structure includes a first electrode, a second electrode, and a mobile element. The first electrode is coupled to a first voltage source. The second electrode is coupled to a second voltage source. The mobile element includes a third electrode coupled to a third voltage source. A steady voltage difference between the first electrode and the third electrode is used to tune the natural frequency of the structure to a scanning frequency of an application. An oscillating voltage difference between the second electrode and the third electrode at the scanning frequency of the application is used to oscillate the mobile element. In one embodiment, the mobile unit is a mirror.
Abstract:
A two-dimensional electrostatic scanner with distributed springs is disclosed. The two-dimensional electrostatic scanner comprises a frame, a mirror, one or more first-directional comb drives, two or more second-directional comb drives, four or more first-directional springs, and two or more second-directional springs. The four or more first-directional springs may connect to different electrical voltage source or electrical ground.
Abstract:
Two methods of fabricating a MEMS scanning mirror having a tunable resonance frequency are described. The resonance frequency of the mirror is set to a particular value by mass removal from the backside of the mirror during fabrication.
Abstract:
A vacuum sealing process of a micro-electrical-mechanical-system (MEMS) package is provided. Solder is applied to the rimmed bottom of a lid for the package. A micro-electro-mechanical system (MEMS) device is attached to a substrate for the package. Solder is applied to a lipped top of the substrate. The lid and the substrate are sealed in an elevated temperature and vacuum environment.
Abstract:
A touch screen display includes a screen, a bezel around the screen, and a MEMS package located within the bezel. The MEMS package comprises a MEMS scanning mirror and the top of the MEMS package is located below the top of the screen. At rest, a reflecting surface of the MEMS scanning mirror is parallel or slightly tilted relative to the screen but not substantially perpendicular to the screen. The display further includes a fixed mirror located in the bezel above the MEMS scanning mirror.