Abstract:
An apparatus and a method for treating fluids with ultrasound are provided. In order to achieve a desired effect of the treatment as efficiently as possible, the apparatus has a plurality of inlet openings for the fluids and the fluids to be brought into contact with one another while being exposed to ultrasound.
Abstract:
A coating fluid for photosensitive-layer formation having high productivity and stability and a process thereof are provided. Also provided are a high-performance electrophotographic photoreceptor and an image-forming apparatus which are capable of forming high-quality images even in various use environments and are less apt to cause image defects such as black spots or color spots. The objects are accomplished with a process for producing a coating fluid which is for forming a photosensitive layer of an electrophotographic photoreceptor and comprises a charge-generating material and a binder resin, wherein a dispersing medium having an average particle diameter in the range of from 1.0 μm to 350 μm is used as a dispersing medium for dispersing the charge-generating material in the coating fluid for photosensitive-layer formation. The coating fluid for photosensitive-layer formation produced by this process is preferable as a photosensitive layer of an electrophotographic photoreceptor. The charge-generating material preferably comprises a phthalocyanine pigment and the phthalocyanine pigment in the coating fluid preferably has a 50% cumulative particle diameter (D50) of 0.13 μm or smaller as determined by a dynamic light scattering method.
Abstract:
A chemical mixing device. The device includes a flow generator operative to provide at least two streams of chemicals and a mixing chamber, including at least two inlets adapted to receive the at least two streams of chemicals and an outlet through which a mixture of the streams of chemicals is ejected from the mixing device. The mixing chamber has an open state in which the chemicals are mixed and a closed state in which the volume of the mixing chamber is less than a fifth of the open state volume.
Abstract:
The invention relates to an apparatus for mixing a gaseous or liquid substance into fiber suspension. The apparatus includes a tubular body, which defines a space that forms a flow channel for the suspension, in which body an inlet and an outlet for the suspension are arranged so that the suspension flows through the flow channel mainly in the axial direction. Further the apparatus comprises a feed member that extends into the flow channel transversely against the flow direction of the suspension and has a cylindrical wall provided with openings for leading the substance from the feed member into the flow channel. At least one protrusion is arranged on the inner surface of the tubular body in the region the feed member. A throttling member is arranged in the flow channel downstream of the feed member in the flow direction of the suspension, and a mixing chamber is formed in the flow channel between the feed member and the throttling member.
Abstract:
The present invention provides a method and system for providing on-site electrical power to a fracturing operation, and an electrically powered fracturing system. Natural gas can be used to drive a turbine generator in the production of electrical power. A scalable, electrically powered fracturing fleet is provided to pump fluids for the fracturing operation, obviating the need for a constant supply of diesel fuel to the site and reducing the site footprint and infrastructure required for the fracturing operation, when compared with conventional systems. The treatment fluid can comprise a water-based fracturing fluid or a waterless liquefied petroleum gas (LPG) fracturing fluid.
Abstract:
The carbonation device includes a cap system selectively mounted to the mouth of a liquid container. The cap system includes a cap, a syringe piston reciprocable within the cap, an actuating mechanism for reciprocating the syringe piston, and a reaction vessel selectively attached to the bottom of the cap. The syringe piston includes a storage area to be filled with reactant liquid (water) by repeated activation of the actuating mechanism. The water from the charged syringe piston discharges into the reaction vessel that has been filled with a preselected amount of reactants to initiate the carbonation reaction. In various embodiments, the carbonation device includes a rotatable control ring to selectively puncture a CO2 cartridge inside the reaction vessel or introduce water into the reaction vessel to initiate carbonation reaction. In various embodiments, the CO2 flows from the reaction vessel into the container to carbonate the liquid or beverage contained therein.
Abstract:
A recharge insert, for use with a spray dispenser device, is made of a matrix material impregnated with a chemical composition that is made dry-to-the-touch and is held in place by a porous three-dimensional polyethylene film that prevents direct skin contact, while allowing the chemical composition to be dissolved in solution with a diluent fluid such as water. When the spray bottle is filled with water, sealed, and shaken, the fluid penetrates into the matrix material, and the chemical composition becomes dissolved in solution, thereby creating a cleaning, sanitizing or disinfectant solution that will remain stable and fully active in use. The recharge insert may be engaged with an insert locating adapter as may be desired.
Abstract:
Apparatus for delivering a fluid to a location includes a means for supplying fluid connected to a reservoir. The reservoir has a variable volume and includes an outlet via which fluid may be delivered to the location.
Abstract:
Apparatus for delivering a fluid to a location includes a mechanism for supplying fluid connected to a reservoir. The reservoir has a variable volume and includes an outlet via which fluid may be delivered to the location.
Abstract:
A bridge comprises a first inlet port, a second inlet port, an outlet port, and a chamber for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber. The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber. The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port, and the droplets combine at the liquid bridge. In another embodiment, a droplet segments into smaller droplets which bridge the gap between the inlet and outlet ports.