Abstract:
Disclosed herein are apparatuses and methods for conducting multiple simultaneous micro-volume chemical and biochemical reactions in an array format. In one embodiment, the format comprises an array of microholes in a substrate. Besides serving as an ordered array of sample chambers allowing the performance of multiple parallel reactions, the arrays can be used for reagent storage and transfer, library display, reagent synthesis, assembly of multiple identical reactions, dilution and desalting. Use of the arrays facilitates optical analysis of reactions, and allows optical analysis to be conducted in real time. Included within the invention are kits comprising a microhole apparatus and a reaction component of the method(s) to be carried out in the apparatus.
Abstract:
An extruder (100) for comestible material comprises a tubular barrel (104) and one or more elongated, axially rotatable, helically flighted screws (120, 122) within the barrel (104), where the barrel (104) has a delivery opening (114a). The extruder barrel (104) is equipped with an assembly (22) for delivery of fluid to the interior thereof, including a static mixing section (54) operable to blend the steam and water to create a blended mixture; the blended mixture is delivered to the barrel opening (114a) by means of a conveying assembly (84, 86) having a pipe assembly (86) with an outlet in communication with the barrel opening (114a); the pipe assembly (86) and opening (114a) have diameters less than maximum internal diameter of the static mixer casing (72).
Abstract:
The present invention provides a method and system for providing on-site electrical power to a fracturing operation, and an electrically powered fracturing system. Natural gas can be used to drive a turbine generator in the production of electrical power. A scalable, electrically powered fracturing fleet is provided to pump fluids for the fracturing operation, obviating the need for a constant supply of diesel fuel to the site and reducing the site footprint and infrastructure required for the fracturing operation, when compared with conventional systems. The treatment fluid can comprise a water-based fracturing fluid or a waterless liquefied petroleum gas (LPG) fracturing fluid.
Abstract:
A microfluidic element for thoroughly mixing a liquid with a reagent used for the analysis of the liquid for an analyte contained therein and a method thereof are disclosed. The microfluidic element has a substrate and a channel structure. The channel structure includes an elongate mixing channel and an output channel. The mixing channel has an inlet opening and an outlet opening, and is implemented to mix the reagent contained therein with the liquid flowing through the inlet opening into the mixing channel. The outlet opening of the mixing channel is in fluid communication to the output channel. The outlet opening is positioned closer to the middle of the length of the mixing channel than the inlet opening.
Abstract:
The present invention provides a method and system for providing on-site electrical power to a fracturing operation, and an electrically powered fracturing system. Natural gas can be used to drive a turbine generator in the production of electrical power. A scalable, electrically powered fracturing fleet is provided to pump fluids for the fracturing operation, obviating the need for a constant supply of diesel fuel to the site and reducing the site footprint and infrastructure required for the fracturing operation, when compared with conventional systems. The treatment fluid can comprise a water-based fracturing fluid or a waterless liquefied petroleum gas (LPG) fracturing fluid.
Abstract:
The present invention provides a method and system for providing on-site electrical power to a fracturing operation, and an electrically powered fracturing system. Natural gas can be used to drive a turbine generator in the production of electrical power. A scalable, electrically powered fracturing fleet is provided to pump fluids for the fracturing operation, obviating the need for a constant supply of diesel fuel to the site and reducing the site footprint and infrastructure required for the fracturing operation, when compared with conventional systems. The treatment fluid can comprise a water-based fracturing fluid or a waterless liquefied petroleum gas (LPG) fracturing fluid.
Abstract:
A bridge comprises a first inlet port, a second inlet port, an outlet port, and a chamber for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber. The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber. The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port, and the droplets combine at the liquid bridge. In another embodiment, a droplet segments into smaller droplets which bridge the gap between the inlet and outlet ports.
Abstract:
A multi-port liquid bridge (1) adds aqueous phase droplets (10) in an enveloping oil phase carrier liquid (11) to a draft channel (4, 6). A chamber (3) links four ports, and it is permanently full of oil (11) when in use. Oil phase is fed in a draft flow from an inlet port (4) and exits through a draft exit port (6) and a compensating flow port (7). The oil carrier and the sample droplets (3) (“aqueous phase”) flow through the inlet port (5) with an equivalent fluid flow subtracted through the compensating port (7). The ports of the bridge (1) are formed by the ends of capillaries help in position in plastics housings. The phases are density matched to create an environment where gravitational forces are negligible. This results in droplets (10) adopting spherical forms when suspended from capillary tube tips. Furthermore, the equality of mass flow is equal to the equality of volume flow. The phase of the inlet flow from the droplet inlet port (5) and the draft inlet port (4) is used to determine the outlet port (6) flow phase.
Abstract:
The present invention provides a method and system for providing on-site electrical power to a fracturing operation, and an electrically powered fracturing system. Natural gas can be used to drive a turbine generator in the production of electrical power. A scalable, electrically powered fracturing fleet is provided to pump fluids for the fracturing operation, obviating the need for a constant supply of diesel fuel to the site and reducing the site footprint and infrastructure required for the fracturing operation, when compared with conventional systems. The treatment fluid can comprise a water-based fracturing fluid or a waterless liquefied petroleum gas (LPG) fracturing fluid.
Abstract:
The present invention provides a method and system for providing on-site electrical power to a fracturing operation, and an electrically powered fracturing system. Natural gas can be used to drive a turbine generator in the production of electrical power. A scalable, electrically powered fracturing fleet is provided to pump fluids for the fracturing operation, obviating the need for a constant supply of diesel fuel to the site and reducing the site footprint and infrastructure required for the fracturing operation, when compared with conventional systems. The treatment fluid can comprise a water-based fracturing fluid or a waterless liquefied petroleum gas (LPG) fracturing fluid.