Abstract:
Provided are a rare-earth permanent magnet whose magnet density after sintering is very high and a method for manufacturing a rare-earth permanent magnet. Thus, a magnet raw material is milled into magnet powder, and then, a compound 12 is formed by mixing the magnet powder thus milled with a binder. Next, the compound 12 thus formed is subjected to a hot-melt molding onto a supporting substrate 13 so as to form a green sheet 14 molded to a sheet-like shape. Thereafter, while the green sheet 14 thus molded is softened by heating, magnetic field orientation is carried out by applying a magnetic field to the green sheet 14 thus heated; and further, the green sheet 14 having been subjected to the magnetic field orientation is calcined by a vacuum sintering, which is further followed by a pressure sintering to produce a permanent magnet 1.
Abstract:
A pulverant material supply system has an outer shell, an inner shell, and a plurality of openings to a passage within the inner shell to allow a reducing fluid into the pulverant material contained therein. The liner is made from a non-evaporable getter alloy.
Abstract:
Provided is a sliding member having: a back metal layer; and a sliding layer on the back metal layer. The sliding layer includes a porous sintered layer and a resin composition. The sintered layer includes Ni—P alloy phase and granular steel phase made of a carbon steel including 0.3-1.3 mass % of carbon and having a structure of: ferrite phase; and perlite phase, or perlite phase and cementite phase. The Ni—P alloy phase binds the steel phases with one another and/or binds the steel phases with the back metal layer. The steel phase includes a low perlite phase part in a surface. The low perlite phase part has an area ratio of the perlite phase lowered by 50% or more compared with a total area ratio of the perlite phase and the cementite phase at a central part of the steel phase when observed in a cross-section.
Abstract:
Provided are a sputtering target that is capable of forming a Cu—Ga film, which has an added Ga concentration of 1 to 40 at % and into which Na is well added, by a sputtering method and a method for producing the sputtering target. The sputtering target has a component composition that contains 1 to 40 at % of Ga, 0.05 to 2 at % of Na as metal element components other than F, S and Se, and the balance composed of Cu and unavoidable impurities. The sputtering target contains Na in at least one form selected from among sodium fluoride, sodium sulfide, and sodium selenide, and has a content of oxygen of from 100 to 1,000 ppm.
Abstract:
Provided is a sliding member comprising: a steel back metal layer; and a sliding layer including a porous sintered layer and a resin composition. The porous sintered layer includes Fe or Fe alloy granules and a Ni—P alloy part functioning as a binder for binding the Fe or Fe alloy granules with one another and/or for binding the Fe or Fe alloy granules with the steel back metal layer. The steel back metal layer is made of a carbon steel including 0.05 to 0.3 mass % of carbon, and includes: a non-austenite-containing portion having a structure of a ferrite phase and perlite formed in a central portion in a thickness direction of the steel back metal layer; and an austenite-containing portion having a structure of a ferrite phase, perlite and an austenite phase formed in a surface portion of the steel back metal layer facing the sliding layer.
Abstract:
Disclosed are an anode active material for lithium secondary batteries and a method for manufacturing same, the anode active material comprising: a core part including a carbon-silicon complex and having a cavity therein; and a coated layer which is formed on the surface of the core part and includes a phosphor-based alloy.
Abstract:
There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder. Next, a mixture is prepared by mixing the magnet powder and a binder made of long-chain hydrocarbon and/or of a polymer or a copolymer consisting of monomers having no oxygen atoms. Next, the mixture is formed into a sheet-like shape so as to obtain a green sheet. After that, the green sheet is held for a predetermined length of time at binder decomposition temperature in a non-oxidizing atmosphere so as to remove the binder by causing depolymerization reaction or the like to the binder, which turns into monomer. The green sheet from which the binder has been removed is sintered by raising temperature up to sintering temperature. Thereby a permanent magnet 1 is obtained.
Abstract:
A porous and permeable composite for treatment of contaminated fluids characterized in that said composite includes a body of iron particles and 0.01-10% by weight of at least one functional ingredient distributed and locked in the pores and cavities of the iron body. Also, methods of making a permeable porous composite for water treatment. Also, use of a permeable porous composite for reducing the content of contaminants in a fluid, wherein said fluid is allowed to pass through the permeable composite.
Abstract:
Disclosed are interfacially modified particulate and polymer composite material for use in injection molding processes, such as metal injection molding and additive process such as 3D printing. The composite material is uniquely adapted for powder metallurgy processes. Improved products are provided under process conditions through surface modified powders that are produced by extrusion, injection molding, additive processes such as 3D printing, Press and Sinter, or rapid prototyping.
Abstract:
A pre-alloyed iron-based powder is provided including small amounts of alloying elements which make possible a cost efficient manufacture of sintered parts. The pre-alloyed iron-based powder comprises 0.2-1% by weight of Cr, 0.05-0.3% by weight of Mo, 0.1-1% by weight of Ni, 0.09-0.3% by weight of Mn, 0.01% by weight or less of C, less than 0.25% by weight of O, and less than 1% by weight of inevitable impurities, the balance being iron.