Abstract:
Embodiments of the present invention include a filter element for decomposing contaminants including a substrate, and a photocatalytic composition comprising at least a photocatalyst and a co-catalyst. The embodiments of the present invention also includes a system for decomposing contaminants including a substrate, and a photocatalytic composition comprising at least a photocatalyst and a co-catalyst; and a method using the system.
Abstract:
There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder. Next, a mixture is prepared by mixing the magnet powder and a binder made of long-chain hydrocarbon and/or of a polymer or a copolymer consisting of monomers having no oxygen atoms. Next, the mixture is formed into a sheet-like shape so as to obtain a green sheet. After that, the green sheet is held for a predetermined length of time at binder decomposition temperature in a non-oxidizing atmosphere so as to remove the binder by causing depolymerization reaction or the like to the binder, which turns into monomer. The green sheet from which the binder has been removed is sintered by raising temperature up to sintering temperature. Thereby a permanent magnet 1 is obtained.
Abstract:
The present invention relates to an organic electroluminescent device comprising a substrate, an organic electroluminescent element, and a photocatalyst layer, wherein the organic electroluminescent element includes: a first conductive layer provided on the substrate; an organic electroluminescent layer provided on the first conductive layer; and a second conductive layer provided on the organic electroluminescent layer, wherein the photocatalyst layer covers all or part of a light-emitting region of the organic electroluminescent element, and contains a photocatalyst and a co-catalyst, and wherein an absolute value of the difference (|R1−R2|) between the refractive index (R1) of the photocatalyst and the refractive index (R2) of the co-catalyst at a wavelength of 589 nm is 0 to 0.35.
Abstract:
In a permanent magnet and a manufacturing method thereof, entire magnet can be densely sintered without a gap between a main phase and a grain boundary phase. Fine powder of milled neodymium magnet is mixed with a solution containing an organometallic compound expressed with a structural formula, M-(OR)X, wherein M represents Cu, Al, Dy, Tb, V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, and X represents an arbitrary integer, to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. The magnet powder is desiccated and then held for several hours in hydrogen atmosphere at a pressure higher than normal atmospheric pressure, at 200-900 degrees Celsius for calcination process in hydrogen. The calcined powder after calcination process in hydrogen is held for several hours in vacuum at 200-600 degrees Celsius for dehydrogenation process.
Abstract:
There are provided a rare-earth permanent magnet and a manufacturing method of a rare-earth permanent magnet capable of improving magnetic properties by optimizing magnetic field orientation. In the method, magnet material is milled into magnet powder. Next, the magnet powder and a binder are mixed to obtain a mixture 12. The thus prepared mixture 12 is then formed into a long-sheet-like shape on a supporting base 13 by hot-melt molding so as to obtain a green sheet 14. The thus formed green sheet 14 is heated to soften and a magnetic field is applied to the heated green sheet 14 for magnetic field orientation. The green sheet 14 subjected to the magnetic field orientation is sintered and thereby a permanent magnet 1 is obtained.
Abstract:
Embodiments of the present invention include a filter element for decomposing contaminants including a substrate, and a photocatalytic composition comprising at least a photocatalyst. The embodiments of the present invention also includes a system for decomposing contaminants including a substrate, and a photocatalytic composition comprising at least a photocatalyst; and a method using the system.
Abstract:
There are provided a rare-earth permanent magnet, and a method for manufacturing a rare-earth permanent magnet and a system for manufacturing a rare-earth permanent magnet, capable of achieving improved shape uniformity. Magnet material is milled into magnet powder, and the milled magnet powder is formed into a formed body 40. The formed body 40 is calcined and then sintered using a spark plasma sintering apparatus 45, so that a permanent magnet 1 is manufactured. A die unit 46 included in the spark plasma sintering apparatus 45 that performs spark plasma sintering at least includes in one direction an inflow hole 50 configured to receive inflow of part of the pressurized formed body.
Abstract:
Embodiments of the present invention include a filter element for decomposing contaminants including a substrate, and a photocatalytic composition comprising at least a photocatalyst. The embodiments of the present invention also includes a system for decomposing contaminants including a substrate, and a photocatalytic composition comprising at least a photocatalyst; and a method using the system.
Abstract:
An optical resin composition of the present invention includes fluorine-containing resin and a refractive index modifier. The optical resin composition satisfies the following matter (a) or (b): (a) the refractive index modifier includes 95 mass % or more of a linear polymer (A) including repeating units based on a fluorine-containing ethylene-based monomer such that the number of the repeating units is 5, and a proportion of a content of the linear polymer (A) in the optical resin composition is 1 mass % or more and less than 15 mass %; (b) the refractive index modifier includes 95 mass % or more of a linear polymer (B) including repeating units based on a fluorine-containing ethylene-based monomer such that the number of the repeating units is 6, and a proportion of a content of the linear polymer (B) in the optical resin composition is 1 mass % or more and less than 13 mass %.
Abstract:
In an embodiment, there is provided a photocatalyst element comprising: a porous resin base material that comprises interconnecting pores, and a three-dimensional network skeleton forming the pores; and a photocatalyst which is supported on a surface of the three-dimensional network skeleton of the porous resin base material and/or contained in the three-dimensional network skeleton of the porous resin base material. The photocatalyst element has excellent antimicrobial effects.