Abstract:
An ozonizer which comprises a flat hollow metal grounded electrode and a discharge electrode plate spaced apart therefrom by a discharge space. The discharge electrode plate includes a flat hollow dielectric member, a high voltage electrode formed on the inner surface of the dielectric member, a spacer material provided within and held in a clamped state by the dielectric member, a lead conductor provided within and held in a clamped state by the spacer material and a connector connecting the lead conductor and high voltage electrode.
Abstract:
A cell or apparatus for treating a fluid by electron emission as the fluid is passed through a space between a dielectric layer located on a surface of a first electrode and a second electrode and as the electrodes are operated by an attached, appropriate circuit to cause electron emission within the space can be constructed so as to improve the efficiency of the cell or apparatus and so as to promote the amount of time which the dielectric layer may be used without breakdown. In constructing a cell or apparatus for this purpose cooling jackets are provided for circulating cooling fluids in contact with the surfaces of these electrodes remote from one another. In accordance with the disclosure the pressures of the fluids used in the cooling jackets and the fluid passing through the space of the apparatus or cell are regulated so as to maintain the electrical characteristics of the cell or apparatus substantially constant. This improves the efficiency of the circuit used to power the cell. In achieving such regulation the pressures are also preferably regulated so that there is substantially no deflection or movement of the dielectric layer. This minimizes the chances of such dielectric layer breaking down.
Abstract:
The invention provides a method and apparatus for generating large quantities of singlet oxygen and/or ozone at unexpectedly high efficiencies. An electron beam generated by a hollow cathode plasma discharge device (HCD) is spread by disclosed means over an electron-transmissive window past which is flowing an oxygen-containing atmosphere at a high velocity.
Abstract:
An improved ozone generator includes a cryogenically cooled reaction chamber in which gaseous oxygen well below the boiling point of ozone is subjected to a corona discharge and forms liquid ozone. The discharge portion of the reaction chamber holds a body of liquid ozone to block the flow of unreacted oxygen from the reaction chamber. A bed of glass particles within the body of liquid helps to suppress explosive decomposition of the ozone. A temperature gradient across the discharge portion of the reaction chamber permits the ozone to volatilize to a gas and exit the reaction chamber in a smooth, controllable manner.
Abstract:
Apparatus and method are disclosed for high efficiency electrical conversion of oxygen to ozone. An oxygen-containing gas is passed upwardly through a particulate dielectric contained between spaced electrode surfaces, whereby a fluidized bed is established consisting of a suspension of said dielectric particles in the streaming gas. Means are present for simultaneously maintaining a silent electrical discharge across the spaced electrodes and through the fluidized bed. The bed acts as a highly effective heat sink and also promotes the presence of high-frequency components in the current waves passing between electrodes, as a result of which increased electrical efficiency and increased ozone output is enabled in the conversion process.
Abstract:
A continuous reaction is effected in a gas stream by an electric discharge at a point in the stream where the flow has been made supersonic and the pressure and temperature lowered by a substantially adiabatic expansion. Various forms of apparatus for carrying out such a process are described. The apparatus may be used for the production of ozone which is used to convert ethylene and tetramethyl-ethylene fed into the apparatus into the corresponding ozonides. On leaving the apparatus the ozonides are converted in the presence of water into formaldehyde and acetone respectively.ALSO:A continuous reaction is effected in a gas stream by an electric discharge at a point in the stream where the flow has been made supersonic and the pressure and temperature lowered by a substantially adiabatic expansion. One form of apparatus, Fig. 1, comprises a supersonic nozzle 1, a pressure reducing chamber 17 for starting the action of the nozzle and a recompression chamber 13. Gas from an inlet pipe 6 passes along a cylindrical chamber 5 to a convergent part 2 of the nozzle 1 and then expands in a divergent part 4. A hollow electrode 8 supported by insulators 9 and 10 in the chamber 5 produces a discharge at the outlet 7 of the nozzle 1. The recompression chamber 13 comprises a convergent part 14, a cylindrical part 15 and a divergent part 16. This apparatus may be used for the production of acetylene and hydrogen from methane gas, or for the cracking of other hydrocarbons. An alternative form of apparatus is described in which the electrode 8 is extended to the part 16 of the chamber 13 and is closed at the end, but is provided with side vents for the injection of methane into the part 15 of the chamber 13. Two discharges are set up, the first at the end of the nozzle 1 for producing ozone, and the second in the chamber 13 for partially oxidizing the methane.
Abstract:
An apparatus and method of generating ozone and its incorporation into a system apparatus and method of cleaning exhaust gasses from fossil fuel burning boilers and/or furnaces are disclosed.
Abstract:
In accordance with at least one exemplary embodiment, a syringe device, a method and a system for delivering a therapeutic amount of ozone are disclosed. A sterility case can enclose a syringe portion and can maintain sterility while the syringe device is interfaced to an ozone generator. A valvably-controlled fluid channel can extend from a barrel of the syringe portion through the case. Conducting elements can be attached to the case and can breach the case. The conducting elements can be connected to electrodes. The electrodes can be attached to the syringe portion. The syringe portion can be filled with oxygen gas via the valvably-controlled fluid channel. An electric current can be provided to the conducting elements from the ozone generator resulting in a corona discharge from at least one of the electrodes. A therapeutic amount of ozone gas can be produced from the oxygen gas and the syringe portion delivered into a sterile field without compromise.