Abstract:
A liquid leak detector for a pump is described. The liquid leak detector is mountable on a pump to detect leaked fluid coming from the pump. The leak detector includes a buffer tube positioned on the pump to collect a leaked fluid from the pump and a sensor positioned on the buffer tube to detect the level of leaked fluid in the buffer tube and to generate a signal when the leaked fluid reaches a maximum fluid level. A purge line on the buffer tube removes leaked drive fluid from the buffer tube once the leaked drive fluid reaches a maximum level. Logic connected to the sensor receives the signal from the detector and generates an alarm.
Abstract:
The present disclosure relates to controls and related methods for mitigating liquid (e.g., compressor refrigerant, etc.) migration and/or floodback.
Abstract:
A hydraulic machine arrangement (1) is described having a housing (5), a working section and a hollow inside said housing (5), a supply port arrangement LPin, HPin, LPout connected to said working area, and a leakage path (7) between said working section and said hollow. It should be possible to detect wear with simple means. To this end, said housing (5) is provided with a leakage port (8) connected to said hollow.
Abstract:
A hydraulic pump system having a pump for pressurizing fluid and a hydraulic chamber for receiving fluid from the pump. An even flow of fluid is outputted from the chamber to a valve assembly. The chamber is formed from a resonator and a resonator cover that are attached in a fluid tight manner by elastic fasteners. The resonator cover acts as a pressure controller in that when the pressure of fluid is of sufficient magnitude, this force creates a gap for controlling fluid pressure output to the valve assembly.
Abstract:
Flowrate in a precision pump used for liquid chromatography employs a digital control system incorporating artificial intelligence. The pump system operates in a default flow mode, wherein real-time pressure feedback is not used to control motor speed, or in pressure mode, wherein motor speed is controlled by the pump system pressure point. The artificial intelligence commands mode changes to pressure mode when the constant displacement flow measurement time is within a threshold relative to commanded flowrate, and when the higher pressure piston is being measured. Flow mode pressure ripple is minimized by monitoring pressure points and commanding motor speed change at appropriate positions during the motor cam rotation. Pressure mode uses the higher pressurized piston as a reference for constant displacement flow measurement and provides accurate flowrate even if one piston is leaky. In pressure mode, the artificial intelligence monitors for intake cycle oscillation and optimizes a highest system pressure gain dynamically. By determining the duration of hydraulic intake and activating proportioning only during the constant intake flow portion of an intake cycle, constant flowrate proportioning is provided. The present invention compensates for a variety of system and environmental variables including leaky valves, air bubbles, a leaky cylinder head, pressure changes, and variations in anticipated compliance and can maintain a flowrate constant within about .+-.1% without using real-time pressure feedback.
Abstract:
Provided is an inspection method for a liquid feeding device capable of preventing an increase in the number of components, a decrease in throughput, and an increase in a leakage source. The method includes: suctioning a fluid from a fluid tank into a first cylinder by driving a first plunger in a suction direction; driving the first plunger in a discharge direction after suction; stopping the first plunger for a predetermined first time; driving the first plunger in the discharge direction; and estimating a leakage amount in a flow path on an upstream side of a second check valve based on a detection value of a pressure detected by a pressure sensor from start of the driving of the first plunger in the discharge direction to end of the driving of the first plunger in the discharge direction.
Abstract:
The present disclosure relates to controls and related methods for mitigating liquid (e.g., compressor refrigerant, etc.) migration and/or floodback.
Abstract:
An electric diaphragm pump having a pump head assembly in a first housing, a motor assembly in a second housing, a fluid sensor, and a leak alert system and/or pump shut-off system. The fluid sensor detects a presence of fluid which has leaked outside of a pump chamber and is located within a cavity of the diaphragm drive chamber. The leak alert system indicates that fluid has been detected by the fluid sensor and the shut-off control system stops operation of the pump based on fluid being detected by the fluid sensor.
Abstract:
A peristaltic pump is provided comprising a drive unit, a pumphead comprising a pressing element. The pumphead is connectable to the drive unit such that, when connected, the pressing element is driveable by the drive unit to exert a peristaltic action on a tube arranged within the pumphead. The pumphead further comprises an optical sensor, wherein the optical sensor comprises an emitter and a receiver which are mounted on the drive unit and a reflector element mounted on the pumphead. The reflector element is arranged on the pumphead such that when the pumphead is connected to the drive unit, radiation emitted by the emitter is reflected by the reflector element towards the receiver.
Abstract:
A peristaltic pumphead is provided that has a pumping chamber within which is disposed a pressing element for exerting a peristaltic action on a tube extending within the pumping chamber, and an auxiliary chamber which in normal use is a dry chamber. The pumping chamber and the auxiliary chamber are arranged in fluid communication such that liquid which escapes from the tube into the pumping chamber flows from the pumping chamber into the auxiliary chamber.