Abstract:
A method and apparatus for controlling a variable displacement hydraulic pump having a swashplate pivotally attached to the pump. The method and apparatus includes determining a desired swashplate angle as a function of a power limit of the pump, determining an actual swashplate angle, determining a value of discharge pressure of the pump, moving a servo valve spool to a desired position as a function of the desired swashplate angle, the actual swashplate angle and the discharge pressure, and responsively moving the swashplate to the desired swashplate angle position.
Abstract:
A system and method for controlling operation of a sludge material handling system is disclosed. The sludge material handling system includes a positive displacement piston/cylinder pump, a sludge material feed system which delivers sludge material to the pump, and a sludge material disposal system which receives and disposes of sludge material from the pump. A first parameter is sensed, the first parameter bearing a known relationship to an actual volume of sludge material delivered during a pumping cycle. An output value is determined from the first parameter. A control signal is provided as a function of the output value.
Abstract:
A system for the transport of high solids sludge includes a positive displacement pump for pumping sludge through a pipeline. The volume of sludge transported is accurately measured by determining the fill percentage by using a material flow signal, measured time intervals, hydraulic fluid pressure, or hydraulic fluid flow rate during each pumping cycle.
Abstract:
A hydraulic driven electric generator and air conditioning system for simultaneously generating controlled quality electrical power and producing air conditioning in a desired area has a variable displacement hydraulic pump for pumping a hydraulic fluid is driven by a prime engine means. The pump is hydraulically connected to a fixed displacement hydraulic motor which is powered by the fluid flow. The first motor drives an electrical generator means for generating electricity having a rotating blower fan mounted within a generator housing. A second hydraulic motor is hydraulically connected to the output of the first motor and is used to provide power to an air conditioning means. Means monitoring the passage of blower teeth of the rotating blower fan produces an electric output responsive to changes detected in the rotation of the blower fan. Servo control means are mounted with the hydraulic pump for controlling the hydraulic fluid displacement of the variable displacement hydraulic pump in response to the monitor means output to maintain an essentially constant rotation of the blower fan.
Abstract:
A displacement control system for a variable displacement pump comprising a charge pump; a cut-off control valve connected to the charge pump, the cut-off control valve including a valve body having a first and a second pump ports and an outlet port formed therein, the first pump port being connected to the charge pump and the second pump port being connected to the variable displacement pump, a sleeve mounted within the valve body, a pin slidably mounted within the sleeve, a spool slidably mounted within the sleeve, a cylindrical cap member fixedly secured to the valve body defining a spring chamber therein, and a spring disposed within the spring chamber for urging the spool toward connecting the first pump port with the outlet port; and a servo booster connected to the outlet port for controlling the displacement of the variable displacement pump.
Abstract:
A hydraulic control system includes a generating circuit for providing power to a work function. A driving apparatus operates the generating circuit. A control circuit is connected to the generating circuit and the driving apparatus for permitting delivery of power to the work function when the driving apparatus is operating up to a predetermined speed. The control circuit also stops delivery of power to the work function when the driving apparatus runs above the predetermined speed.
Abstract:
A hydraulic control system includes a generating circuit for providing power to a work function. A driving apparatus operates the generating circuit. A control circuit is connected to the generating circuit and the driving apparatus for permitting delivery of power to the work function when the driving apparatus is operating up to a predetermined speed. The control circuit also stops delivery of power to the work function when the driving apparatus runs above the predetermined speed. The control circuit further includes a cut-off apparatus for stopping delivery of power to the work function when the driving apparatus is running up to the predetermined speed.
Abstract:
A thick matter pump comprising a drive motor (50), a (reversible) hydraulic pump (6), and two hydraulic cylinders (5, 5′) coupled to conveyor cylinders (7, 7′) for conveying the thick matter. A regulator regulates the rotational speed N of the drive motor (50), and a regulating clement (18, 20) regulates the displacement volume V of the hydraulic pump (6). A control module (54) regulates the rotational speed N of the motor and the displacement volume V. For improved operational ease and reduction of fuel requirements, noise and waste gas emission, the control module (54) comprises a final control element (56) for regulating the conveyance capacity of the conveyor cylinders (7, 7′), and an electronic control unit (108) which reacts to the position of the final control element (56) and allocates a nominal value to the rotational speed regulator and to the displacement volume regulator (20), in a software-assisted manner.
Abstract:
A thick matter pump comprising a conveyance capacity control system. Said thick matter pump comprises a drive motor 50 which is preferably embodied as an internal combustion engine, a hydraulic pump 6 which is preferably embodied as a reversible pump, which has a variable displacement volume V and can be coupled to the driving motor, and two hydraulic cylinders 5, 5′ which are connected to the hydraulic pump 6, can be controlled by the same in a push-pull manner, and are each coupled to a conveyor cylinder 7, 7′ for conveying the thick matter. A regulator for regulating the rotational speed N is associated with the drive motor 50, and a regulating element 18, 20 for regulating the displacement volume V is associated with the hydraulic pump 6. A control module 54 is also provided for regulating the rotational speed N of the motor and the displacement volume V. According to the invention, the control module 54 comprises a final control element 56 for regulating the thick matter conveyance capacity F of the conveyor cylinders 7, 7′, and an electronic control unit 108 which reacts to the position of the final control element 56 and allocates a nominal value to the rotational speed regulator and to the displacement volume regulator 20, in a software-assisted manner. These measures enable improvement of the operational ease of the thick matter pump, and reduction of fuel requirements, noise emission and waste gas emission during practical use.
Abstract:
A flow control system for controlling a variable displacement pump including a metering valve in fluid communication with the pump for metering an output of the pump. A regulating valve receives a portion of the output of the pump as a bypass flow at a first pressure, wherein an output of the regulating valve is at an interim pressure. The interim pressure is substantially equal to an average of the first pressure and a low reference pressure. An actuator sets a displacement of the pump by acting on a piston connected to a cam ring of the pump. The actuator receives the interim pressure and, thereby, the output of the variable displacement pump is determined.