Abstract:
The invention relates to a spindle compressor without operating fluid in the working space with a 2-tooth spindle rotor and a 3-tooth spindle rotor in a surrounding compressor housing-and preferably non-parallel rotation axes of the two spindle rotors, in particular for use in compression refrigeration machines. In order to improve the degree of efficiency while providing flexible power adjustment, it is proposed according to the invention that a multi-stage spindle compressor be used as a refrigerant compressor, whose compressor housing and whose spindle rotors are cooled via a partial-flow branch-off of liquid refrigerant from the refrigerant main flow circuit, wherein the compressor housing is cooled in a controlled manner by means of refrigerant evaporation, with the refrigerant vapor being subsequently fed to the inlet, and that, for power adjustment, there are also post-inlet feeds into the working space in addition to the inlet feed, and also pre-outlet discharges in addition to the outlet discharge from the outlet space, each with their own regulating device.
Abstract:
the screw compressor with a variable rotational speed of the screw compressor, the rotational speed of the screw compressor having a speed profile in which the rotational speed is changed stepwise such that between stepwise changes the rotational speed of the screw compressor is kept substantially constant for a time period, repeating the speed profile until the pressure of the pressure vessel reaches a set pressure value, determining pressure of the pressure vessel, power consumption of the screw compressor drive and mass flow rate during the pressurising when the rotational speed of the screw compressor is kept substantially constant, calculating energy efficiency of the screw compressor drive as a function of pressure of the pressure vessel and rotational speed of the screw compressor on the on the basis of the determined pressure of the pressure vessel and power consumption of the screw compressor drive.
Abstract:
A refrigerant compressor includes a sealed case, which contains a compression mechanism, a motor part, and an oil reservoir formed in a lower portion. An oil supply pipe links the oil reservoir and a suction side of the compression mechanism and introduces oil in the oil reservoir to the suction side. The amount of oil supply provided to the suction side is adjusted by detecting the rotational speed of the motor part, such that the amount of oil supply provided to the suction side of the oil supply pipe decreases as the rotational speed of the motor part increases.
Abstract:
An electric motor, and the electric motor includes a stator core provided on a stator, a plurality of teeth provided on the stator core, a coil wound body attached to the tooth, an inner flange portion provided at an inner diameter side of a bobbin, a first engagement portion provided at one end side in a width direction of the inner flange portion, and a second engagement portion provided at the other end side in the width direction of the inner flange portion, the first engagement portion being provided to be located at an outer side in a diameter direction than the second engagement portion of the adjacent coil wound body in a moving direction, the second engagement portion being provided to be located at an outer side in a diameter direction than the first engagement portion of the adjacent coil wound body in a moving direction.
Abstract:
Unique apparatuses, methods, and systems of opposing, limiting, and/or preventing undesired or un-commanded compressor rotation are disclosed. One exemplary embodiment is an HVACR system comprising a variable frequency drive configured to drive an electric motor to rotate a screw compressor or scroll compressor. A controller is configured to monitor various aspects of the system and to control the drive. When a condition indicative of potential undesired or un-commanded compressor rotation is identified, the controller commands the variable frequency drive to control the motor to limit and preferably prevent compressor rotation. One technique comprises shorting switches of the drive to a DC bus rail to allow back EMF induced current in the motor windings to be dissipated through winding resistance thus providing a damping force. Another technique comprises controlling the inverter to insert a DC current into the motor to cause the motor to align to and hold a particular position.
Abstract:
A scroll compressor includes a rotation shaft, a fixed scroll, a movable scroll, a compression chamber, and a shaft support. A movable member is movable in an axial direction of the rotation shaft toward and away from the movable scroll. A rotation restriction mechanism includes a pin and a hole that is loosely fitted into the hole. An orbital radius switching mechanism moves the movable member in a first direction when a rotation speed of the rotation shaft is increased, which decreases an orbital radius of the pin relative to the hole so that an orbital radius of the movable scroll is decreased, and moves the movable member in a second direction when the rotation speed of the rotation shaft is decreased, which increases the orbital radius of the pin relative to the hole so that the orbital radius of the movable scroll is increased.
Abstract:
A high reliability water injected scroll air compressor is provided with an orbiting scroll, a fixed scroll corresponding to the orbiting scroll, a motor that generates driving force for making the orbiting scroll orbit the fixed scroll, a compressing path from a suction port to a discharge port, and a portion for injecting water into the compressing path. The operation is controlled by a switching operation in which water is injected into the compressing path and then no water is injected. Corrosion, failure of activation, and concerns about wrap contact when water is injected into an air end are avoided by switching the operation with water injection and the operation without water injection so as to prevent water from remaining in the air end.
Abstract:
A compressed gas supply unit has scroll compressors. Gas discharged from the scroll compressors travels through a main supply passage and is reserved in a reservoir tank, after which the gas is supplied to a gas recipient from a supply passage. The scroll compressors include inverter devices that allow for independent modulation of the speeds of respective drive motors. The controller includes a speed range setting unit that sets an upper speed limit and a lower speed limit of the scroll compressors, a speed sum calculating unit that calculates a sum of speeds of the scroll compressors based on a load of the compressed gas supply unit, and a speed setting unit that allocates the calculated sum of speeds among the scroll compressors to set speeds for scroll compressors respectively.
Abstract:
An improved bearing housing of a rotary screw compressor is described. The bearing housing is generally shorter than a convention bearing housing. The bearing housing can be configured to enclose and support radial bearings of the screw compressor. The bearing housing can be configured not to enclose axial bearings of the screw compressor in an axial direction.
Abstract:
A common mode coil can be installed without having to increase the planar area for an inverter accommodating section so that high performance and size reduction and compactness of an inverter device can be achieved. In an integrated-inverter electric compressor (1) in which an outer periphery of a cylindrical housing (2) is provided with an inverter accommodating section (4) in which an inverter device (20) that includes high-voltage components, such as an inverter board (21), a smoothing capacitor (23), an inductor coil (24), and a common mode coil (30); a terminal block (26) connected with a high-voltage cable; and a bus bar assembly (32) for electrical wiring between these electrical components is installed, the inverter accommodating section (4) is provided with an outward extending portion (9) extending outward from one end of the cylindrical housing (2), the terminal block (26) is disposed at one side of the outward extending portion (9), and a coil installation site (12), where the common mode coil (30) is disposed, is formed integrally with the outward extending portion (9) and extends downward below the terminal block (26).