Abstract:
The invention relates to a method for the production of a bladder accumulator (10) which separates two media chambers (16, 18) from one another in a storage housing (12) by means of a bladder body (14), comprising at least the following production steps:—extruding a plastic tube over the bladder body (14);—shaping the plastic tube with the integrated bladder body (14) in a molding tool that corresponds to a predeterminable plastic core container (20), and—winding at least one plastic fiber from the outside on the plastic core container (20) for the purpose of creating the storage housing (12).
Abstract:
The present invention provides a Type 3 pressure vessel comprising a polar boss that is attached to a metallic liner and provides reinforced static strength, fatigue strength, endurance, chemical resistance and/or corrosion resistance of the liner orifice or neck region. In particular, the material of the polar boss has higher static strength, fatigue strength, endurance, chemical resistance and/or corrosion resistance relative to that of the liner material.
Abstract:
A pressure storage unit (2) for a camshaft, having an integrated controllable pressure storage device for supporting hydraulic engine components, which includes a housing (4) with a piston (14) mounted movably therein having a piston floor (18), and a spacer element (28) being provided on the piston floor (18).
Abstract:
A pressure vessel includes: an outer container unit having an inner space and first and second supporting portions; a lining container disposed inside the outer container unit and having an end portion that corresponds to the first supporting portion; an elastic diaphragm disposed in and dividing the inner space into air and water chambers, and having retaining and extending sectors that correspond in position to the end portion and the second supporting portion respectively; and a pressing member disposed in the air chamber and having first and second pressing segments that press tightly the retaining sector and the end portion against the first supporting portion and the extending sector on the second supporting portion respectively.
Abstract:
An accumulator membrane unit (2) for inclusion into an accumulator chamber (6) in an accumulator (1) for storing hydraulic energy under pressure. The accumulator membrane unit includes membrane elements (3) that are sealingly joined at their peripheries and limit an inside membrane volume (V) which varies in dependence of a pressure at an outside of the accumulator membrane unit. The invention also concerns an accumulator, a method and a rock drilling machine.
Abstract:
A method of forming a floating piston includes fabricating a piston cup, wherein the piston cup includes a top, a sidewall void of any seal-gripping irregularities, and an open end, and forming an elastomer seal over the sidewall of the piston cup. A floating piston includes a piston cup having a top, a sidewall extending about the periphery of the top and an open end, wherein the sidewall is void of any seal-gripping irregularities; and an elastomer seal formed about the sidewall of the piston cup.
Abstract:
An impermeable elastic membrane for hydropneumatic accumulators is made from an impermeable film of completely hydrolyzed polyvinyl alcohol, with a high molecular weight, and plasticized, with protective layers on both sides of polyamide, ethylene vinyl alcohol, or ethylene vinyl acetate. The membrane may be used in the hydropneumatic suspension of an automobile. The film can be obtained by extrusion, by injection molding, or by pressure molding.