Abstract:
This invention relates to methods of fabricating components of a pressure vessel using a dicyclopentadiene prepolymer formulation in which the purity of the dicyclopentadiene is at least 92% wherein the formulation further comprises a reactive ethylene monomer that renders the prepolymer formulation flowable at ambient temperatures and to pressure vessels that are fabricated by said methods.
Abstract:
The present invention is a tank suitable to contain high pressure fluids, especially for compressed natural gas used for automotive purposes. The tank has a discoid shape to be easily placed on board of vehicles. The tank comprises a sealed internal core and an external coating made through a twisted coats fiber wrapping of composite material with a very high mechanical tensile resistance. According to some executive variants, the tank internally comprises a reinforcing structure made up of a plurality of elements welded in contact with the internal surface of the core.
Abstract:
The present invention is a tank suitable to contain high pressure fluids, especially for compressed natural gas used for automotive purposes. The tank has a discoid shape to be easily placed on board of vehicles. The tank comprises a sealed internal core and an external coating made through a twisted coats fiber wrapping of composite material with a very high mechanical tensile resistance. According to some executive variants, the tank internally comprises a reinforcing structure made up of a plurality of elements welded in contact with the internal surface of the core.
Abstract:
A method of generating a high-level vacuum comprises evacuating a chamber having a substantially-pure gas therein to a medium-level vacuum, and freezing the residual gas to generate the high-level vacuum within the chamber. Impurities, such as atmospheric air, may be purged from the chamber by evacuating the chamber to a medium level vacuum (e.g., around 10−2 Torr) and subsequently filling the chamber with the gas. This purging process may be repeated multiple times to decrease the level of impurities in the gas filling the chamber. The substantially-pure gas may have an impurity-level of less than approximately 100 PPM and may comprise carbon-dioxide, although the scope of the invention is not limited in this respect. The medium level vacuum may range between approximately 1×10−2 Torr and 5×10−2 Torr allowing the use of a roughing pump, and the high-level vacuum may range between approximately 1×10−5 and 1×10−8 Torr.
Abstract:
A gas storage system formed of a continuous pipe wound in plural layers, each layer having plural loops. The pipe may be distributed within a container, which may serve as a carousel for winding the pipe and as a gas containment device. When containers, each containing a continuous pipe are stacked upon each other, the weight of upper containers may be born by the walls of lower containers, thus preventing lower layers of pipe from suffering stresses due to crushing by upper layers. A method of transporting gas to a gas distribution facility including obtaining a supply of gas at a gas supply point remote from the gas distribution facility, injecting the gas into a continuous pipe bent to form plural layers, each layer including plural loops of pipe, transporting the continuous pipe along with the gas to the gas distribution facility preferably in a ship and discharging the gas at the gas distribution facility. It is preferred that cooling of the pipe during discharging of the gas be conserved so that during subsequent filling the pipe is initially cool. Also, in a further aspect of the invention, during filling, the gas pressure should be maintained as constant as possible for example by controlled release of an incompressible liquid from the pipe as the pipe is filled with gas. Energy from the incompressible liquid may then be recovered or dissipated outside of the pipes.
Abstract:
A multivalve with a storage bag and a storage bag configured for temporarily accommodating a liquid gas fuel around a discharge for a liquid gas fuel store formed from a deformable memory material, wherein the storage bag has a temporary, size-reduced position, an outer diameter of the storage bag then being less than 48 mm, and a second, operative position, the storage bag having a sufficient volume. A multivalve with a storage bag includes a storage bag having a bottom with sides rising from the bottom, a one-way valve being placed in or close to the bottom and connected to an inlet in the storage bag, the one-way valve being welded to the plastic of the storage bag.
Abstract:
A method of generating a high-level vacuum comprises evacuating a chamber having a substantially-pure gas therein to a medium-level vacuum, and freezing the residual gas to generate the high-level vacuum within the chamber. Impurities, such as atmospheric air, may be purged from the chamber by evacuating the chamber to a medium level vacuum (e.g., around 10−2 Torr) and subsequently filling the chamber with the gas. This purging process may be repeated multiple times to decrease the level of impurities in the gas filling the chamber. The substantially-pure gas may have an impurity-level of less than approximately 100 PPM and may comprise carbon-dioxide, although the scope of the invention is not limited in this respect. The medium level vacuum may range between approximately 1×10−2 Torr and 5×10−2 Torr allowing the use of a roughing pump, and the high-level vacuum may range between approximately 1×10−5 and 1×10−8 Torr.
Abstract:
A hydrogen storage and delivery system is provided having an orifice pulse tube refrigerator and a liquid hydrogen storage vessel. A cooling system, coupled to the orifice pulse tube refrigerator, cools the vessel and abates ambient heat transfer thereto in order to maintain the liquid hydrogen in the vessel at or below its saturation temperature. Hydrogen boil-off, and the necessity to provide continuous venting of vaporized hydrogen are minimized or avoided. In a preferred embodiment, the hydrogen storage vessel has a toroidal shape, and the pulse tube refrigerator is a two stage pulse tube refrigerator and extends within a central void space defined at the geometric center of the toroidal storage vessel. Also in a preferred embodiment, the cooling system includes first and second thermal jackets, each having a substantially toroidal shape and enclosing the storage vessel, wherein each of the thermal jackets is thermally coupled to one of the first or second stages of the pulse tube refrigerator in order to cool the vessel and to abate ambient heat leak thereto. The hydrogen storage and delivery system is particularly suitable for use in vehicles, such as passenger automobiles.
Abstract:
This invention concerns improvements to toroidal-shaped L.P.G. tanks (1) which, due to their particular shape, may be easily placed inside the spare wheel compartment (10). In the toroidal-shaped tank described herein, the hollow center of the tank is used for positioning the valve group connection rings (3), which may either project or be flush-mounted and also for allowing the passage of the pipes (4, 5) for connecting the tank with the engine fuel supply system and the filler. The valves are placed between a lid (6), at the top, and a bottom plate (7) tide to each other in such a manner as to constitute an airtight chamber.