Abstract:
Systems and methods are provided for calibrating emission data or other information signals collected during a polymerase chain reaction (PCR), amplification reaction, assay, process, or other reaction. Calibration of multiple detectable materials can be achieved during a single cycle or run, or during a plurality of runs of the reaction. A reading from every well, container, or other support region of a sample support does not have to be taken. Interpolation can be used to determine values for emission data or other information signals that were not taken, or are unknown, using detected emission data, or other detected information signals. By calibrating the detected emission data and the interpolated data, a more accurate reading of emission data or information signal can be obtained.
Abstract:
A method of deriving correction for instrument-to-instrument variations in the illumination band centroid wavelengths and wavelength band shapes of the optical systems of clinical chemistry instruments includes the steps of determining the centroid wavelength and wavelength band shape of a light source used in the optical system of a clinical chemistry instrument to provide a determined wavelength band shape and centroid wavelength, comparing the determined wavelength band shape and centroid wavelength with a known reflection density or absorbance wavelength spectrum of a specific type of chemical reagent test to provide a correction value, and calculating the correction value, which is to be used to modify a reflection density or absorbance measurement taken by the instrument of a reagent test of the a specific type of chemical reagent test.
Abstract:
Various methods for controlling one or more parameters of a flow cytometer type measurement system are provided. One embodiment includes monitoring parameter(s) of the measurement system during measurements of sample microspheres. The method also includes altering the parameter(s) in real time based on the monitoring. Another method includes monitoring a temperature proximate to the measurement system. One such method includes altering a bias voltage of an avalanche photo diode in response to the temperature using empirically derived data. A different such method includes altering output signals of a photomultiplier tube in response to the temperature using a characteristic curve. Some methods include monitoring a temperature of a fluid, in which sample microspheres are disposed, that will flow through the flow cytometer type measurement system. This method also includes determining a velocity of the sample microspheres in the measurement system from a viscosity of the fluid at the temperature.
Abstract:
Methods for generating a calibration factor and for calibrating are provided whereby interstitial spacing between support locations of a platform is used to embed a detectable material, emissions from which are used to generate the calibration factor. In some embodiments, the external space, outer perimeter, and other areas of a platform are used to embed detection materials for the normalization, calibration, correction, compensation, or other method of adjustment for detected emission data. The emission data can be taken from an assay, amplification, reaction, analysis, or other process, for example, from a PCR run or other reaction. By calibrating or adjusting the sample support with the detected emission data, a more efficient detection of the assay, amplification, reaction, analysis, or other process, can be achieved.
Abstract:
Systems and methods for normalizing detected emission data collected in real-time polymerase chain reaction (RT-PCR) and other reactions, are provided. In some embodiments, a sample plate can be loaded with a fluorescent dye and subjected to a real-time PCR reaction. During the initial cycles, detected emissions that correspond to the background signal contributed by the plate, buffer, and other non-reactant pieces of the reaction system and chemistry can be identified. The raw emission data can be normalized by dividing the emission data by the identified baseline signal. According to various embodiments, the normalized amplification profile can normalize to an initial value of 1, because the actual signal emerges from the baseline at the point exponential growth begins. A normalized amplification profile based on a ratio to the baseline can create a more uniformly scaled amplification curve across different samples, filters, wells, dyes, or machines.
Abstract:
A hole inspection system having a light source emitting light over its length and a multi-axes machine having a camera mounted thereon. After the light source is inserted into a cavity intersecting the complex holes, a control commands the multi-axes machine to move the camera to an inspection position associated with one of the complex holes. The control processes substantially only light intensity values received from the camera that represent light shining through the one of the complex holes. Next, a maximum intensity value of light received by the camera from the one of the complex holes is determined. The maximum intensity value is compared to a threshold value, and error data is created that identifies the one of the complex holes in response to the maximum intensity value being less than the threshold value.
Abstract:
The present invention relates to an optical system for triglyceride inspection partially integrated into a toilet seat and comprising a plurality of optical sensor modules and a controlling and processing module, wherein each said optical sensor module comprises a first light source, a second light source and an optical sensor. The optical sensor receives light signals generated by the first and second light sources respectively on the skin of the person (especially the skin of the thighs) to be tested and thereby generates a sensing signal of an adaptive calibration function. The sensing signal is then converted by the controlling and processing module into an inspection value of triglyceride, which is transmitted to a display unit. With the above optical system for triglyceride inspection, triglycerides can be inspected automatically without invasive blood sampling, making the system a convenient home health monitoring device.
Abstract:
In a heating appliance comprising a substrate for receiving an item of cookware, a method of measuring reflectivity comprises emitting a time-varying electromagnetic signal from a first side of the substrate, a portion of the time-varying electromagnetic signal propagating through the substrate. Electromagnetic radiation is then received at the first side of the substrate, the received electromagnetic radiation comprising a background ambient component received and a component reflected by the substrate. A gain factor is applied to translate the received electromagnetic radiation to a receive electrical signal. An offset signal component is then identified from the receive electrical signal, the offset signal component arising from the background ambient component of the received electromagnetic radiation. The gain factor from the offset signal component is then estimated using a characterisation of the offset signal component, and the reflectivity is calculated using the receive electrical signal and the estimated gain factor.
Abstract:
A multiparameter standard solution for verifying and calibrating water quality sensors containing an aqueous pH buffer, a xanthene dye, and distyryl biphenyl (DSBP) is provided. The standard solution provides a safe, quick, easy, and stable field standard to simultaneously conduct calibration analysis for several sensors at once. The standard solution is stable when stored and can be safely disposed of in the field. Methods of calibrating sensors used in water quality analysis using the multiparameter standard solution are also provided.
Abstract:
A method for quantifying a crude oil in water is provided. The method includes selecting an ultraviolet/visible (UV/Vis) wavelength to perform a measurement, preparing calibration solutions in xylene, and preparing a calibration curve from the calibration solutions. A sample is prepared including extracting the crude oil from the water in a two-phase separation with xylene. An absorbance of the sample in the xylene is measured at the UV/Vis wavelength. A concentration of the crude oil in the water is calculated from the absorbance.