Abstract:
A self-lit display panel includes a photonic integrated circuit payer including an array of waveguides and an array of out-couplers for out-coupling portions of the illuminating light through pixels of the panel. The self-lit display panel may include a transparent electronic circuitry layer backlit by the photonic integrated circuit layer; the two layers may be on a same substrate or on opposed substrates defining a cell filled with an electro-active material. The configuration allows for chief ray engineering, zonal illuminating, and separate illumination with red, green, and blue illuminating light.
Abstract:
The present disclosure relates to a method comprising the following steps: a) forming a waveguide from a first material, the waveguide being configured to guide an optical signal; b) forming a layer made of a second material that is electrically conductive and transparent to a wavelength of the optical signal, steps a) and b) being implemented such that the layer made of the second material is in contact with at least one of the faces of the waveguide, or is separated from the at least one of the faces by a distance of less than half, preferably less than a quarter, of the wavelength of the optical signal. The application further relates to a phase modulator, in particular obtained by such a method.
Abstract:
Methods and systems for a low-voltage integrated silicon high-speed modulator may include an optical modulator comprising first and second optical waveguides and two optical phase shifters, where each of the two optical phase shifters may comprise a p-n junction with a horizontal section and a vertical section and an optical signal is communicated to the first optical waveguide. A portion of the optical signal may then be coupled to the second optical waveguide. A phase of at least one optical signal in the waveguides may be modulated utilizing the optical phase shifters. A portion of the phase modulated optical signals may be coupled between the two waveguides, thereby generating two output signals from the modulator. A modulating signal may be applied to the phase shifters which may include a reverse bias.
Abstract:
Embodiments of an optical modulator device are described. An example optical modulator includes a ridge laser configured to emit light, a ridge waveguide configured to transition between a transparent state and an absorbing state, and a waveguide tap formed between the ridge laser and the ridge waveguide. The waveguide tap is configured to optically couple a fraction of light generated in the ridge laser to the ridge waveguide. In the transparent state of the ridge waveguide, the ridge waveguide is configured to output the fraction of light for interference with light emitted from the ridge laser. In the absorbing state of the ridge waveguide, the ridge waveguide is configured to absorb the fraction of light. Depending upon whether the fraction of light is output from the ridge waveguide for interference, the output power of the laser seen at the far-field of the optical modulator can be modulated for data communications.
Abstract:
A direct-drive polymer modulator including a platform, a multilayer waveguide formed in/on the platform, the waveguide including a bottom cladding layer, an electro-optic polymer core and a top cladding layer, and at least a portion of the waveguide forming a direct-drive polymer modulator.
Abstract:
A semiconductor nanolaser includes a rib formed by a stack of layers, in which stack central layers (33, 34, 35) forming an assembly of quantum wells are placed between a lower layer (32) of a first conductivity type and an upper layer (36) of a second conductivity type. Holes (42) are drilled right through the thickness of the rib, wherein the lower layer includes first extensions (38, 40) that extend laterally on either side of the rib, and that are coated with first metallizations (42, 44) that are located a distance away from the rib. The stack includes second extensions (45, 46) that extend longitudinally beyond said rib, and that are coated with second metallizations (47, 48).
Abstract:
An optoelectronic device. The optoelectronic device operable to provide a PAM-N modulated output, the device comprising: M optical modulators, M being an integer greater than 1, the M optical modulators being arranged in a cascade, the device being configured to operate in N distinct transmittance states, as a PAM-N modulator, wherein, in each transmittance state of the N distinct transmittance states, each of the M optical modulators has applied to it a respective control voltage equal to one of: a first voltage or a second voltage.
Abstract:
Methods and systems for a low-voltage integrated silicon high-speed modulator may include an optical modulator comprising first and second optical waveguides and two optical phase shifters, where each of the two optical phase shifters may comprise a p-n junction with a horizontal section and a vertical section and an optical signal is communicated to the first optical waveguide. A portion of the optical signal may then be coupled to the second optical waveguide. A phase of at least one optical signal in the waveguides may be modulated utilizing the optical phase shifters. A portion of the phase modulated optical signals may be coupled between the two waveguides, thereby generating two output signals from the modulator. A modulating signal may be applied to the phase shifters which may include a reverse bias.
Abstract:
An optical device includes a substrate and an optical rib waveguide structure formed of a slab and a rib. A vertically-oriented P-N-P or N-P-N dual-junction diode is formed inside the rib waveguide, including a first doped region, a second doped region and a third doped region electrically connected to the first doped region, where two P-N junctions are formed at the boundaries of the first and the second doped regions, and the second and the third doped regions, respectively. The depletion regions of the two junctions are substantially in the center of a guided optical mode propagating at the core region through the rib waveguide. The optical device further includes a first metal contact and a second metal contact in electrical contact with the first doped region and the second doped region, respectively.
Abstract:
An optical modulator and a method for manufacturing an optical modulator are provided. The optical modulator includes a first waveguide, a second waveguide, a modulating portion connected between the first waveguide and the second waveguide, the modulating portion being configured to receive an input signal from the first waveguide, to modulate the input signal and to supply a corresponding modulated input signal as an output signal to the second waveguide, wherein the modulating portion includes a semiconductor substrate, one end thereof being coupled to the first waveguide, and a corresponding opposite end thereof being coupled to the second waveguide, a Germanium rib provided on the substrate such that the input signal propagates through the Germanium rib along a longitudinal axis thereof, and a first electrode and a second electrode respectively provided on the substrate, wherein the Germanium rib is provided between the first electrode and the second electrode, and wherein the first electrode and the second electrode are configured to apply an electrical field to the Germanium rib in order to modulate the input signal propagating through the Germanium rib.