Abstract:
The invention provides methods of forming an optical device, in particular, a silicon optical modulator using shallow rib waveguide structure. According to the embodiments of the present invention, the silicon optical waveguide modulator includes a shallow rib waveguide with asymmetric shoulder heights disposed on a surface of a substrate; one side terminated by the waveguide edge and the other side terminated by a second laterally oriented PN junction, a first vertically oriented PN junction is positioned inside the light propagation region of the waveguide; and higher doping regions with the same type of doping type of the adjoining regions are positioned on the asymmetric shoulders outside the light propagation regions in electrical contact with metal contacts.
Abstract:
An optical device includes a substrate and an optical rib waveguide structure formed of a slab and a rib. A vertically-oriented P-N-P or N-P-N dual-junction diode is formed inside the rib waveguide, including a first doped region, a second doped region and a third doped region electrically connected to the first doped region, where two P-N junctions are formed at the boundaries of the first and the second doped regions, and the second and the third doped regions, respectively. The depletion regions of the two junctions are substantially in the center of a guided optical mode propagating at the core region through the rib waveguide. The optical device further includes a first metal contact and a second metal contact in electrical contact with the first doped region and the second doped region, respectively.
Abstract:
An optical waveguide mode transformer device includes a first optical waveguide bend structure and a second optical waveguide bend structure formed by vertically stacked multiple layers of light transparent media. One of the core layers of the optical waveguide bends has a higher refractive index and the other has a lower refractive index. The waveguide centers of the two optical bend structures are de-centered. The bend structure having higher refractive index core layer terminates at a location of the mode transformer device between its two ends. With proper bend structure design, the optical power can be completely transferred from the high index waveguide to the low index waveguide with the help of such vertical stacked de-centered bend structure.
Abstract:
An optical device including an optical bench and an optical chip, the optical bench having multiple optical waveguides formed on its first side and the optical chip has multiple optical waveguides formed on its first side. The optical chip is flip-chip bonded onto the optical bench with its first side facing the first side of the optical bench. The distance between adjacent waveguides on the optical bench are designed to be slightly different from the distance between adjacent waveguides on the optical chip, where the latter usually is a pre-designed value under certain conventions. The difference amount is properly designed such that under reasonable misalignment between the optical chip and the optical bench in the in-plane direction perpendicular to waveguide propagation one can always find that one of the multiple waveguides is aligned sufficiently well with the corresponding waveguide on the optical chip.
Abstract:
The invention provides methods of forming an optical device, in particular, a silicon optical modulator using shallow rib waveguide structure. According to the embodiments of the present invention, the silicon optical waveguide modulator includes a shallow rib waveguide with asymmetric shoulder heights disposed on a surface of a substrate; one side terminated by the waveguide edge and the other side terminated by a second laterally oriented PN junction, a first vertically oriented PN junction is positioned inside the light propagation region of the waveguide; and higher doping regions with the same type of doping type of the adjoining regions are positioned on the asymmetric shoulders outside the light propagation regions in electrical contact with metal contacts.
Abstract:
An optical device includes a substrate and an optical rib waveguide structure formed of a slab and a rib. A vertically-oriented P-N-P or N-P-N dual-junction diode is formed inside the rib waveguide, including a first doped region, a second doped region and a third doped region electrically connected to the first doped region, where two P-N junctions are formed at the boundaries of the first and the second doped regions, and the second and the third doped regions, respectively. The depletion regions of the two junctions are substantially in the center of a guided optical mode propagating at the core region through the rib waveguide. The optical device further includes a first metal contact and a second metal contact in electrical contact with the first doped region and the second doped region, respectively.
Abstract:
An optical device includes an optical bench and two flip-chip bonded optical chips. The optical bench includes a large area slab waveguide structure which has an input facet facing the first optical chip, an output facet facing the second optical chip, and one or more curved facet which reflects the slab mode light such that the input optical mode coupled through the input facet diverges in the slab waveguide plane as it propagates, reflects at the one or more curved facets, and focuses to an output optical mode at the output facet with mode size larger than the input optical mode in the in-plane direction. During fabrication, after the first optical chip is flip-chip bonded, the location of the focused output optical mode on the output facet is determined, and then the second optical chip is flip-chip bonded based on the determined location of the output optical mode.
Abstract:
The invention provides an optical system, in particular, a multi-channel parallel optical transceiver system and methods of forming the same. The multi-channel parallel optical system includes a first substrate with at least one optical component mounted on its first side, a second substrate with optical fibers affixed in fiber fixing structures (grooves), the second substrate being mounted on the first side of the first substrate perpendicular to the first side of the first substrate so that the optical signal can be transmitted and received between the optical fibers and the mounted optical components with minimum loss. Passive alignment assembly is realized by using a series of alignment pins and holes and/or grooves pre-fabricated on the substrates. The optical systems may additionally include other structures to provide additional functionalities, in-line monitor photodetectors, and mechanical support or substrate elevation.
Abstract:
A Ge waveguide photo-detector fabricated on a silicon-on-insulator substrate is provided. It comprises a Ge waveguide detector end-coupled to a light-signal-carrying silicon waveguide, both disposed on a silicon-on-insulator (SOI) substrate. An electrical field is established along the direction of light propagation inside the Ge waveguide detector by doping the two opposite ends of the Ge detector with P or N type dopants. In result the height and width of the Si waveguide is decoupled from the speed of the Ge detector.
Abstract:
A hybrid optical device includes an optical bench chip, a laser chip with a laser waveguide flip-chip bonded onto the optical bench chip, and an optical waveguide chip with an optical device waveguide disposed adjacent the optical bench chip. The optical bench chip has multiple “U” shaped alignment optical waveguides and the optical waveguide chip has multiple alignment optical waveguides, and the pitches of the various sets of alignment waveguides are different. A misalignment between the laser waveguide and the optical bench chip is compensated for by aligning the optical waveguide chip to different positions of the optical bench chip using the multiple alignment optical waveguides on the optical bench chip and the optical waveguide chip, without turning on the laser, so that the laser waveguide of the laser chip is aligned with the optical device waveguide of the optical device chip.