Abstract:
A liquid crystal display device of an embodiment of the present invention includes a liquid crystal layer, a specular reflection layer, the polarization layer disposed on the viewer's side, a retardation layer interposed between the liquid crystal layer and the polarization layer, and a light scattering layer disposed on the viewer's side of the polarization layer. The light scattering layer has a scattering surface. The scattering surface includes a macro uneven structure which has light scatterability and a micro uneven structure which is superimposedly formed over the macro uneven structure and which is smaller than visible light wavelengths.
Abstract:
A reflector is provided in a reflective or transmissive liquid crystal display device. In the reflector, when light is incident on the reflector in a first direction, a reflection characteristic profile of light reflected therefrom shows a reflectance distribution which is asymmetric with respect to a specular reflection angle of the incident light and shows a non-Gaussian distribution in which a maximum value of reflectance is within a reflection angle range smaller than the specular reflection angle of the incident light. In addition, when light is incident on the reflector in a second direction perpendicular to the first direction, a reflection characteristic profile of light reflected therefrom shows the non-Gaussian distribution, similar to the case in which the light is incident on the reflector in the first direction.
Abstract:
A reimagable medium and a method for “writing” to a reimagable medium are disclosed. The reimagable medium includes a liquid crystal layer, one or more photochromic layers and an electric field generating apparatus. The electric field generating apparatus supplies voltage levels across the liquid crystal layer causing the liquid crystal layer to transfer between a white and a transparent state. The photochromic layers transfer to a colored state when illuminated by ultraviolet light and to a transparent state when illuminated by visible light. Each of the layers maintains their present states when voltage or illumination below corresponding thresholds is supplied. The reimagable medium is flexible and may maintain an image “written” to it until the paper is rewritten. The paper may be attached to a colored substrate if an additional color is to be displayed.
Abstract:
The liquid-crystal switching or display device comprises a chiral smectic liquid-crystal mixture, where the ratio Δ/Θ of the angle between the rubbing direction and the smectic layer normal to the tilt angle in the liquid-crystal mixture is at least 0.41. Preferably, the liquid-crystal mixture has the phase sequence I-N-C and the tilt angle Θ at 25° C. is between 19° and 39°.
Abstract:
A multi-layer device comprising a first substrate, a first electrically conductive layer on a surface thereof, and a first current modulating layer, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.
Abstract:
A multi-layer device comprising a first substrate, a first electrically conductive layer on a surface thereof, and a first current modulating layer, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.
Abstract:
A multi-layer device comprising a first substrate, a first electrically conductive layer on a surface thereof, and a first current modulating layer, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.
Abstract:
A display device includes a first substrate, a second substrate, and a plurality of light emitting sections. The first substrate includes a first surface and a second surface which faces the first surface. The second substrate is arranged to face the first substrate, and is configured with a first surface which faces the second surface of the first substrate, and a second surface which faces the first surface. The plurality of light emitting sections is provided on the second surface of the first substrate while being separated from the second substrate. A light transmission suppression layer on which a light transmission section to transmit light from light emitting sections is provided is formed on the second surface of the second substrate in correspondence to each light emitting section. An anti-reflection layer is formed in the light transmission section.
Abstract:
A system for generating signals for Raman vibrational analysis, particularly for a CARS microscope or spectroscope of an external specimen, the system including a laser source capable of emitting at least one fundamental optical pulse in a first band of fundamental frequencies including at least one first and one second fundamental frequencies; a second-harmonic generating system including at least one nonlinear optical crystal for converting the at least one fundamental optical pulse into a first and a second-harmonic optical pulse; and a Raman vibrational analysis apparatus capable of receiving the first and second second-harmonic pulses and direct them toward the specimen.
Abstract:
A Mach Zehnder (MZ) modulator (1) includes a splitter (4) for splitting incident light in one wave guide (3) into two modulator arms (5,6) of the MZ and a combiner (7) that combines light from the two arms (5,6) into an output mode, where electrodes (9,10) are present in connection with the arms (5,6) for changing the refractive index in the arms in order to modulate incident light so that the light is amplified or so that an extinction, due to interference between the light in the two arms, takes place. The splitter (4) is arranged to split incident light equally into the two arms (5,6) and a part (11) of one of the arms (5) between the electrode (9) and the combiner (7) is designed to cause an intentional loss of light in the wave guide (5), whereby a desired asymmetry in transmission of the two arms (5,6) occurs.