Abstract:
A first oscillator includes: a ring resonator; an oscillation circuit having a negative resistance active circuit coupled to a first point on the ring resonator for oscillating at an oscillation frequency and resonating the resonator; an output terminal, coupled to a second point on the ring resonator where a voltage is substantially zero with respect to the predetermined frequency when the ring resonator resonates, for outputting a resonant frequency signal, wherein even order harmonic components are outputted with the fundamental component suppressed. A second oscillator includes a ring resonator having points A to D equidistantly dividing the ring resonator, first and second oscillation circuits coupled to the points A and B respectively, first and second grounding capacitors having capacitance equivalent to those of the first and second oscillation circuits. Thus, two independent oscillators which do not affect each other are provided with a single resonator. In the first and second oscillators, grounding capacitors, a resonant capacitor may be provided to miniaturize the oscillator. Variable capacitances may be provided to prevent the point from moving with a change in the controlled oscillation frequency. Frequency synthesizers and communication apparatus including the first or second oscillator are also disclosed.
Abstract:
An oscillator (100) includes a resonator (218) having a mirco-strip (217). The micro-strip (217) couples an inductive component (221) to a capacitive portion (219). To tune the oscillator (100), a number of cuts are made on the pad (221) in order to restrict the signal flow. The width of these cuts determine the degree of restriction posed on the signal flow. This controllable restriction of the signal flow provides the circuit (100) with enhanced tunability.
Abstract:
A monolithic microwave IC oscillator includes a feedback amplifier having a field effect transistor and a varactor diode. The varactor diode has a junction capacitance that varies according to the bias voltage applied to said diode and capacitively couples the amplifier to an external load. Any variation of the capacitance of the load-coupling capacitor caused by design errors or by variations in the manufacturing process can be easily corrected when the device is used. As a consequence, the oscillator can always be operated with good oscillaitng characteristics without hindering integration of individual components and without increasing costs.