Abstract:
A high-frequency circuit device includes: a chip which includes a high-frequency element, a high-frequency circuit, a signal conductor, and a chip ground; a package substrate on which the chip is disposed, a shunt path which is constituted by a package signal conductor which is disposed on an upper surface of the package substrate and is electrically connected to the signal conductor, a package first ground which is electrically connected to the chip ground, and a shunt element which is electrically connected to the package signal conductor and the package first ground; and a package second ground which is disposed at least inside the base of the package substrate or on a back surface of the package substrate, wherein a part of the base, a part of the shunt path, and the package second ground constitute a capacitive structure.
Abstract:
The disclosure is directed to a frequency synthesizer circuit including digitally controlled oscillator (DCO) and an injection locked digitally controlled oscillator (ILD). The ILD outputs a signal with a frequency that is some fraction of the frequency of the DCO output signal and locked in phase to the DCO output signal. The frequency synthesizer circuit drives the ILD with the same modulation input signal that drives the DCO, with the modulation input signal scaled to account for any mismatch between the gains of the DCO and ILD. Driving the ILD with the same, scaled modulation signal as the main DCO minimizes the frequency offset between the DCO output signal and the divided natural oscillation frequency of the ILD. Minimizing the frequency offset makes the lock of the ILD more robust and reduces jitter contribution from the ILD.
Abstract:
In some embodiments, the present disclosure relates to a frequency generator having a resistor network and a capacitor network. The capacitor network has a plurality of capacitors connected in parallel with one another. A comparator is configured to output an oscillating voltage signal. An input of the comparator is connected to the output of the resistor network and the output of the capacitor network. A frequency testing circuit is configured to calculate a frequency of the oscillating voltage signal and determine whether the frequency is within a range of an expected frequency. The frequency testing circuit may also be configured to selectively connect a first plate of the plurality of capacitors to a non-varying voltage or to the input of the capacitor network to adjust a frequency of the oscillating voltage signal.
Abstract:
Methods and devices providing Positive Logic biasing schemes for use in a digitally tuning capacitor in an integrated circuit device are described. The described methods can be used in integrated circuits with stringent requirements in terms of switching time, power handling, noise sensitivity and power consumption. The described devices include DC blocking capacitors arranged in series with stacked switches coupled to RF nodes. The stacked FET switches receive non-negative supply voltages through their drains and gates during the ON and OFF states to adjust the capacitance between the two nodes.
Abstract:
According to an embodiment, a receiver includes a voltage controlled oscillator, a frequency-to-digital converter and an input sensitivity controller. In the voltage controlled oscillator, input sensitivity relative to a baseband signal is controlled based on an input sensitivity control signal. The voltage controlled oscillator oscillates at a frequency controlled by a voltage of the baseband signal to generate an oscillation signal. The frequency-to-digital converter performs frequency-to-digital conversion of the oscillation signal to generate a digital signal. The input sensitivity controller generates the input sensitivity control signal based on the digital signal.
Abstract:
An oscillation circuit includes a circuit for oscillation that oscillates a resonator, an output circuit that has a signal, output from the circuit for oscillation, input thereto to thereby output an oscillation signal, a connection terminal to which power is applied, a first wiring that connects from the connection terminal to the output circuit, and a second wiring that is connected to the first wiring through a connection node provided on the first wiring and connects from the connection node to the circuit for oscillation. The circuit for oscillation, the output circuit, the connection terminal, the first wiring, and the second wiring are provided on a semiconductor substrate. The length of a wiring extending from the connection terminal of the first wiring to the connection node is shorter than the length of the second wiring.
Abstract:
An apparatus for generating an oscillating output signal includes an inductive-capacitive (LC) circuit and a current tuning circuit. The LC circuit includes a primary inductor and a varactor coupled to the primary inductor. A capacitance of the varactor is responsive to a voltage at a control input of the varactor. The current tuning circuit includes a secondary inductor and a current driving circuit coupled to the secondary inductor. The current driving circuit is responsive to a current at a control input of the current driving circuit. An effective inductance of the primary inductor is adjustable via magnetic coupling to the secondary inductor, and a frequency of the oscillating output signal is responsive to the effective inductance of the primary inductor and to the capacitance of the varactor.
Abstract:
A system using temperature tracking for a controlled oscillator (CO) is provided. The system includes at least one coarse tuning capacitor circuit including a plurality of selectable coarse tuning capacitors operable in at least three modes of operation, thereby allowing switching between each coarse capacitor of the plurality of selectable coarse capacitors when a selected coarse tuning capacitor has reached one of its high tuning range and low tuning range.
Abstract:
Variable capacitor structures and methods of use are disclosed. The variable capacitor structures include a variable controlled oscillator which includes a variable capacitor structure having at least one capacitor set driven by a control gate voltage of a voltage control circuit which comprises a logic cell that senses a selected frequency band and sets the control gate voltage based on the selected frequency band.
Abstract:
An oscillator circuit includes an oscillating amplifier circuit to which an oscillator element is connected, and which generates an oscillation signal, and a plurality of MOS type variable capacitance elements each having two terminals, one of which is electrically connected to the oscillating amplifier circuit, the MOS type variable capacitance elements have respective threshold voltages different from each other, a control voltage is applied to one of the terminals of each of the MOS type variable capacitance elements, and a reference voltage is applied to the other of the terminals of each of the MOS type variable capacitance elements. It is also possible for the MOS type variable capacitance elements to be different from each other in dope amount of impurities to a semiconductor layer below a gate electrode.