Abstract:
A network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 52 sub-carriers.
Abstract:
An object of the present invention is to provide a peak power suppressing circuit 9 that can suppress a peak power of an IQ baseband signal more assuredly.The present invention relates to the peak power suppressing circuit 9 that performs a clipping process on an IQ baseband signal. The suppressing circuit 9 includes a power calculation section 13 that calculates an instantaneous power P of an IQ baseband signal, a pulse retention section 22 that retains a cancellation pulse S that has a frequency component in a frequency band B of the IQ baseband signal and a frequency component outside the frequency band, and a clipping processing section 17 that subtracts, from an IQ baseband signal whose instantaneous power P that has been calculated is greater than a predetermined threshold Pth, cancellation signals Ic and Qc obtained by multiplying increments ΔI and ΔQ of the IQ baseband signal from the threshold Pth by the cancellation pulse S.
Abstract:
The present invention provides a method and system for reducing the peak to average power ratio (PAP) of a signal with low computational complexity. According to one embodiment, the present invention is applied to reduce the PAP of an OFDM signal. According to an alternative embodiment, the present invention, is applied to reduce the PAP of a CDMA signal. Rather than seeking the optimum solution, which involves significant computational complexity, the present invention provides for a number of sub-optimal techniques for reducing the PAP of an OFDM signal but with much lower computational complexity. In particular, according to one embodiment utilizing the PTS approach, an iterative technique is used to assign phase factors to each of a set of partial transmit sequences from a set of possible phase factors. Experimental results using the iterative technique showed only a slight degradation (1 dB) from the optimal approach using the same number of subblocks and subcarriers. In an alternative embodiment, which avoids feedback required by the iterative approach, a sequence of phase factors are generated randomly and assigned to each of a set of partial transmit sequences. This procedure is repeated for a pre-determined number of trials and the random sequence generating the lowest PAP is selected. In a third embodiment, a set of phase factors is generated using a structured sequence such as a Walsh sequence.
Abstract:
A transmitter and a method are described herein that generate a reduced peak-to-rms ratio multicode radio signal which helps to conserve battery life and increase the communication range and average data throughput rate.
Abstract:
A method and apparatus taught herein reduce the peak-to-average ratio (PAR) of a complex-valued signal based on detecting peaks in the signal that are above a peak threshold, characterizing the detected peaks in Cartesian coordinates, generating cancellation pulses in Cartesian coordinates based on the detected peak characterizations. PAR reduction processing continues with canceling the detected peaks by combining the cancellation pulses with a correspondingly delayed version of the signal. Advantageously, peak detection may be performed in polar form using a computationally efficient peak detection algorithm that avoids calculation of the I and Q peak waveforms unless a signal peak beyond a defined threshold is present. In one or more embodiments, the generation and use of asymmetric and/or shaped cancellation pulses offers further performance advantages.
Abstract:
A peak suppression device includes: a peak determination unit which determines a peak value of a waveform of an input signal; an impulse signal generation unit which generates an impulse signal corresponding to a difference between the peak value and a predetermined value if an absolute value of the peak value is greater than the predetermined value; a multiplication unit which multiplies the generated impulse signal by a predetermined impulse response waveform so as to generate a peak suppression signal; and a subtraction unit which subtracts the peak suppression signal from the input signal.
Abstract:
A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
Abstract:
A method and a device for reducing the crest factor of a signal is operable to generate a correction signal as a combination of a plurality of partial correction signals having respectively predetermined frequencies and a signal having a reduced crest factor being issued as a differential between the correction signal and the signal. The respectively predetermined frequencies are selected such that the correction signal, which has a period length that is shorter than a length of the signal, is periodic. Therefore, according to the invention, only one period of the correction signal is determined and the correction signal is then determined as a periodic continuation of the one period.
Abstract:
A method of channelization code selection for up-link transmission of a wireless communication system is disclosed. The method comprises determining, based on a first power limitation indication value associated with a first terminal of the wireless communication system, if the first terminal is power limited; dynamically selecting at least one first channelization code associated with a first signal variation value for allocation to the first terminal so that, if the first terminal is power limited, the first signal variation value indicates a first minimal signal variation; and signaling an indication of the at least one first channelization code to the first terminal. Corresponding arrangements are also disclosed.
Abstract:
A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.