Abstract:
A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
Abstract:
A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
Abstract:
A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
Abstract:
Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
Abstract:
Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
Abstract:
A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
Abstract:
A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
Abstract:
Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
Abstract:
Methods and systems for processing signals in a wireless communication system are disclosed. Aspects of the method may include calculating at a receiver, a plurality of energy values corresponding to a plurality of signal paths detected within a communication channel. At least one of the plurality of detected signal paths may be selected for processing based on a pre-defined threshold and a dynamic threshold, in order to achieve a desired probability of misdetection and a desired probability of false alarm. The probability of misdetection is a probability that a real signal path is missed, and the probability of false alarm is a probability of detecting a false signal path. A slot boundary, a frame boundary, and/or a scrambling code may be determined for signals communicated via said plurality of signal paths.
Abstract:
Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.