Abstract:
A method of operating a wireless communication device is disclosed. The method includes determining signal quality for wireless communications received over each of a first antenna element and a second antenna element, and processing the signal quality and a power status of the wireless communication device to determine a first multipath search window for the first antenna element and a second multipath search window for the second antenna element.
Abstract:
A UE may store received samples of a wireless signal at cx1 to reduce memory usage, but then may correlate those samples with cx2 timing hypotheses to improve performance. The received sequence is resampled at cx2 instead of cx1. The UE still performs the correlation of the cx2 timing hypotheses for the performance gain, but the reference waveform is resampled with cx2 time offset. A Fast Fourier Transform (FFT) may be taken of the received and reference waveforms. In the frequency domain, resampling may be performed by multiplying the FFT of the reference waveform by a phase ramp—a pointwise multiplication in the frequency domain with a constant magnitude sequence whose phase varies linearly.
Abstract:
A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data, an intermediate frame buffer that receives the de-mapped physical channel data, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data, a CRC checker and an output buffer.
Abstract:
A correlation device is provided that includes an adder for adding an input signal sequence and an auxiliary signal sequence to obtain an addition signal sequence, and a delay element for delaying the addition signal sequence to obtain the auxiliary signal sequence, whereby the delay element has a plurality of coefficient outputs for providing addition signal sequence coefficients. The correlation device comprises further a linking element for the coefficient-wise linking of an addition signal sequence coefficient with a linking coefficient to obtain a correlation result.
Abstract:
A method of operating a wireless communication device is disclosed. The method includes determining signal quality for wireless communications received over each of a first antenna element and a second antenna element, and processing the signal quality and a power status of the wireless communication device to determine a first multipath search window for the first antenna element and a second multipath search window for the second antenna element.
Abstract:
The transport format (TF) of a signal may be blindly detected from a reduced set of TF hypotheses. In an example embodiment, a method for the blind detection of a TF of a signal includes filtering a set of transport format hypotheses to identify a reduced set of TF hypotheses using one or more filtering schemes. From the reduced set of TF hypotheses, a TF that is associated with an interfering signal is detected. The TF includes a modulation and a spreading factor for the interfering signal. It may also include a number of channelization codes. In an example implementation, when an interfering signal is to be canceled, symbols carried by the signal are detected using the detected TF. Example filtering schemes include filtering based on system design/operation, filtering based on known configuration information, filtering based on an expected level of interference contribution, and so forth.
Abstract:
An adjustable code generator is configurable to generate any of a plurality of spread-spectrum code signals. The adjustable code generator includes a feedback polynomial mask table to contain a set of feedback polynomial masks. Respective feedback polynomial masks of the set correspond to respective spread-spectrum code signals of the plurality of spread-spectrum code signals. The adjustable code generator also includes control logic to select any of the feedback polynomial masks of the set contained in the feedback polynomial mask table, and further includes a shift register to provide, at an output, a respective spread-spectrum code signal that corresponds to a feedback polynomial mask selected by the control logic and to receive feedback generated using the feedback polynomial mask selected by the control logic.
Abstract:
A method and apparatus for reducing the processing rate when performing chip-level equalization (CLE) in a code division multiple access (CDMA) receiver which includes an equalizer filter. Signals received by at least one antenna of the receiver are sampled at M times the chip rate. Each sample stream is split into M sample data streams at the chip rate. Multipath combining is preferably performed on each split sample data stream. The sample data streams are then combined into one combined sample data stream at the chip rate. The equalizer filter performs equalization on the combined sample stream at the chip rate. Filter coefficients are adjusted by adding a correction term to the filter coefficients utilized by the equalizer filter for a previous iteration.
Abstract:
A method includes scrambling a Walsh sequence with a random sequence to produce a scrambled Walsh sequence. The method also includes transmitting the scrambled Walsh sequence as an access-based handoff probe.
Abstract:
A circuit for detecting a serial signal comprises a first circuit coupled to receive the serial signal during a predetermined plurality of time periods of substantially equal duration. The first circuit is coupled to receive a first code. The first circuit is arranged to compare a part of the serial signal corresponding to each time period of the plurality of timer periods to the first code, thereby producing a match signal. The first circuit accumulates the match signal from each of the each time period of the plurality of time periods.