Abstract:
A method for detecting multi-path interference in a spread-spectrum signal. A variation of a first signal and a variation of a second signal is compared. The variation of the first signal corresponds to a correlation of the spread-spectrum signal and a spreading code having a first offset. The variation of the second signal corresponds to a correlation of the spread-spectrum signal and the spreading code having a second offset. Multi-path interference is detected in dependence on the comparison.
Abstract:
A method is provided for noise distribution shaping of signals, particularly for the application in receivers for CDMA signals. The method includes the acts of generating a blanking control signal by comparing a received signal with at least one blanking threshold, adapting the at least one blanking threshold or the received signal according to an offset value depending on the amplitude of the received signal, and modifying the noise distribution of the received signal by applying blanking of the received signal under control of the blanking control signal.
Abstract:
A wireless network may comprise a plurality of base stations and a plurality of access points, such as femtocells, which may be installed in homes and/or offices, as deemed necessary to provide improved signal quality and increased data throughput while off-loading capacity from one or more near-by base stations. A user device may be configured to detect proximity to an access point and establish communications preferentially with the access point while refraining from communicating with a base station even though the user device is within a service region of the base station and can communicate with that base station.
Abstract:
An interference cancelling receiver combines data from multiple paths after aligning to transmitter timing, and uses either an equalizer or a Rake receiver to compute symbol estimates. Interference estimates are generated from the symbol estimates, and multiple interference estimates are combined after re-aligning the interference estimates to receiver timing. At least two segments of symbol estimates are computed for each segment of interference cancelled data.Various techniques may be employed for controlling the latency and sequencing of these operations, and the subsystems within the canceller may use different processing clock speeds.
Abstract:
A receiver (100) is provided for signals of different signal strengths and modulated with respective pseudorandom noise (PN) codes. The receiver (100) includes a correlator circuit (120) operable to correlate the signals with a selectable locally-issued PN code having a Doppler and a code lag to produce a peak, the correlator circuit (120) being subject to cross correlation with a distinct PN code carried by least one of the signals that can produce cross correlation; and a cross correlation circuit (370, 400) operable to generate a variable comparison value related to the cross correlation as a function of values representing a Doppler difference and a code lag difference between the locally-issued PN code and the distinct PN code, and to use the variable comparison value to reject the peak as invalid from cross correlation or to pass the peak as a valid received peak.
Abstract:
A airplane based communication and position finding method for receiving in a transceiver a OFDM signal from a mobile unit in an airplane. Demodulating and processing an OFDM received signal into a processed OFDM signal and processing and modulating the processed OFDM signal into a processed modulated signal. Transmitting in the airplane based transceiver the modulated signal to a satellite receiver. Receiving in the airplane based transceiver a second modulated signal from a satellite transmitter, demodulating and processing the second modulated signal into a processed second OFDM signal and modulating and transmitting said processed second OFDM signal to mobile unit. Method for processing an input voice signal, in a mobile unit, into a processed cross-correlated CDMA signal, modulating and transmitting cross-correlated CDMA signal into a modulated transmitted CDMA signal, used in a cellular system.
Abstract:
A receiver (100) is provided for signals of different signal strengths and modulated with respective pseudorandom noise (PN) codes. The receiver (100) includes a correlator circuit (120) operable to correlate the signals with a selectable locally-issued PN code having a Doppler and a code lag to produce a peak, the correlator circuit (120) being subject to cross correlation with a distinct PN code carried by least one of the signals that can produce cross correlation; and a cross correlation circuit (370, 400) operable to generate a variable comparison value related to the cross correlation as a function of values representing a Doppler difference and a code lag difference between the locally-issued PN code and the distinct PN code, and to use the variable comparison value to reject the peak as invalid from cross correlation or to pass the peak as a valid received peak.
Abstract:
In one embodiment, a correlator of a global positioning system receiver in a global positioning system receives a sample satellite signal. The correlator includes a signal comparator configured to receive the sample signal, a first normalized estimate signal, and a second normalized estimate signal. The signal comparator generates a first accumulated output and a second accumulated output. The first accumulated output represents the integration of a correlation of the sample signal and the first normalized estimate signal. The second accumulated output represents the integration of a correlation of the sample signal and the second normalized estimate signal. Using time-multiplexing, the high speed of a digital signal processing core is leveraged to perform calculations of the signal comparator and threshold comparator in real time.
Abstract:
An interference cancelling receiver combines data from multiple paths after aligning to transmitter timing, and uses either an equalizer or a Rake receiver to compute symbol estimates. Interference estimates are generated from the symbol estimates, and multiple interference estimates are combined after re-aligning the interference estimates to receiver timing. At least two segments of symbol estimates are computed for each segment of interference cancelled data.Various techniques may be employed for controlling the latency and sequencing of these operations, and the subsystems within the canceller may use different processing clock speeds.
Abstract:
Communications systems and/or methods are disclosed that may be used to convey information by forming, and then using, a plurality of frequency agile baseband waveforms, wherein any two different waveforms of the plurality of frequency agile baseband waveforms comprise an orthogonality therebetween. The systems/methods disclosed can convey information by mapping an information sequence into a baseband waveform sequence that includes waveforms of the plurality of baseband waveforms, and by transmitting the baseband waveform sequence. Such systems and/or methods can provide extreme privacy, cognitive radio capability, robustness to fading and interference, communications performance associated with M-ary orthonormal signaling and/or high multiple-access capacity.