Abstract:
A transmitting apparatus is disclosed. The transmitting apparatus includes an encoder to perform channel encoding with respect to bits and generate a codeword, an interleaver to interleave the codeword, and a modulator to map the interleaved codeword onto a non-uniform constellation according to a modulation scheme, and the constellation may include constellation points defined based on various tables according to the modulation scheme.
Abstract:
A transmitting apparatus is disclosed. The transmitting apparatus includes an encoder to perform channel encoding with respect to bits and generate a codeword, an interleaver to interleave the codeword, and a modulator to map the interleaved codeword onto a non-uniform constellation according to a modulation scheme, and the constellation may include constellation points defined based on various tables according to the modulation scheme.
Abstract:
A multiple access scheme is described. A first bit stream is scrambled from a first terminal according to a first scrambling signature. A second bit stream is scrambled from a second terminal according to a second scrambling signature, wherein the first bit stream and the second bit stream are encoded using a low rate code. The first scrambling signature and the second scrambling signature are assigned, respectively, to the first terminal and the second terminal to provide a multiple access scheme.
Abstract:
The present invention relates to a method for receiving control information within a subframe of a multi-carrier communication system supporting carrier aggregation, the method comprising the following steps performed at a receiving node: performing a blind detection for the control information within a search space by means of a first search pattern, wherein the first search pattern is one of a plurality of search patterns, each of the plurality of search patterns comprising a plurality of candidates distributed on any of a plurality of aggregation levels, and wherein the plurality of search patterns further comprises a second search pattern whose candidates are non-overlapping the candidates of the first search pattern on the same aggregation levels.
Abstract:
The present invention relates to providing control information within a search space for blind decoding in a multi-carrier communication system. In particular, the control information is carried within a sub-frame of the communication system, the sub-frame including a plurality of control channel elements. The control channel elements may be aggregated into candidates for blind decoding. The number of control channel elements in a candidate is called aggregation level. In accordance with the present invention, the candidates of lower aggregation levels are localised, meaning that the control channel elements of one candidate are located adjacently to each other in the frequency domain. Some candidates of the higher aggregation level(s) are distributed in the frequency.
Abstract:
In a method for generating a data unit conforming to a first communication protocol, a first field and a second field to be included in a preamble of the data unit are generated. The first field includes a first set of one or more information bits that indicate a duration of the data unit and is formatted such that the first field allows a receiver device that conforms to a second communication protocol to determine the duration of the data unit. The second field includes a second set of one or more information bits that indicate to a receiver device that conforms to the first communication protocol that the data unit conforms to the first communication protocol. The first field and the second field are modulated using a modulation scheme specified for a field corresponding to the first field and the second field, respectively, by the second communication protocol.
Abstract:
Improved adaptation to a frequency band comprising sub-bands is provided by receiving a coding rate of an error correction coding scheme for encoding modulation symbols to be transmitted on sub-bands of a frequency band in radio communications, determining relative radio channel qualities of the sub-bands of the frequency band, and allocating transmission power between the sub-bands at least on the basis of the relative radio channel qualities of the sub-bands and the received coding rate.
Abstract:
Embodiments of an enhanced Node B (eNB) and method for precoding with reduced quantization error are generally described herein. In some embodiments, first and second precoding-matrix indicator (PMI) reports may be received on an uplink channel and a single subband precoder matrix may be interpolated from precoding matrices indicated by both the PMI reports. Symbols for multiple-input multiple output (MIMO) beamforming may be precoded using the interpolated precoder matrix computed for single subband for a multiple user (MU)-MIMO downlink orthogonal frequency division multiple access (OFDMA) transmission. In some embodiments, each of the first and second PMI reports includes a PMI associated with a same subband that jointly describes a recommended precoder.
Abstract:
A data communication device includes a plurality of ports for transmitting and receiving a plurality of data strings for which sequential order is specified, transmitting means for transmitting the plurality of data strings through a predetermined port, device information collecting means for collecting information about the plurality of ports and a plurality of ports of a remote device, error occurrence predicting means for predicting the frequency of occurrence of transmission errors at each port, outputting a double-transmission instruction for the detected port to the transmitting means when detecting a port for which a rise in the frequency of occurrence of transmission errors has been predicted. When the double-transmission instruction is input, the transmitting means transmits two or more instances of last data of a plurality of data strings when the transmitting means transmits data strings through the detected port.
Abstract:
Embodiments of inventive concepts are provided wherein a mobile device, such as a smartphone, may be configured to communicate with a base station, using a first mode, and to communicate with an access point using a second mode that comprises a level of security exceeding that of the first mode. The second mode communications between the mobile device and the access point are conducted over a short-range wireless link responsive to an identity of the mobile device and/or responsive to a biometric data being provided by a user of the mobile device. Such second mode wireless communications may include data relating to a financial transaction and/or other data that may require an increased level of privacy and/or security.