Abstract:
The invention provides, as an aspect thereof, an document reading apparatus that includes: a speed calculating unit that calculates a speed related to the rotation of a motor on the basis of a signal that is outputted from an encoder; and a controlling unit that calculates control amount on the basis of the speed calculated by the speed calculating unit so as to control the rotation of the motor in accordance with the calculated control amount. In the configuration of an document reading apparatus according to this aspect of the invention, the above-mentioned controlling unit controls the motor with an increase in the control amount in a case where there occurs no change in the signal that is outputted from the encoder for a certain period of time. The increase in the control amount is based on the length of time that has elapsed since the last change in the signal.
Abstract:
An optical scanning device of the invention includes: n-odd (n≧2) light sources disposed at different positions at least in a sub scanning direction; a light source driving control part configured to control a light emitting state of the light source; and a sub-scanning pixel position detecting part configured to depict one pixel with m-odd (n≧m≧2) light sources of the n-odd (n≧2) light sources and to detect a deviation in position of the one pixel in a sub scanning direction, wherein the light source driving control part is configured to correct the deviation in position of the one pixel in the sub scanning direction at a resolution equal to or higher than a density of the pixel, depicted with the m-odd light sources, by controlling the light emitting state of the m-odd light sources on the basis of a result of detection with the sub-scanning pixel position detecting part.
Abstract:
In an image forming apparatus, a polygon mirror, a plurality of laser generators, a first sensor, and a second sensor are disposed at a resin frame. A laser beam outputted from each of the laser generators and deflected by a deflection surface is irradiated onto a surface of a photosensitive drum to scan the surface over a scan part. The first sensor is disposed at a first position to detect a laser beam deflected by the deflection surface. The second sensor is disposed at a second position to detect a laser beam deflected by the deflection surface. A storage unit stores correspondence information indicating shift of the scan part from a reference scan part in relation to time difference between detections of the laser beam by the first and second sensor. A controller controls the laser generator to output a laser beam based on the shift of the scan part.
Abstract:
A write reference signal generating unit uses horizontal synchronization signals output from BD sensors to generate, for each laser scanning unit of respective image forming units, a main scanning write reference signal for irradiating laser light from a semiconductor laser every other predetermined number of reflective surfaces when photosensitive drums are driven to rotate at a second speed of rotation which is slower than a standard speed of rotation. A phase adjustment unit adjusts the phase of a control signal for driving a polygonal mirror, which is output to a polygon motor of each image forming unit, on the basis of a relative time difference between image write timings of the respective laser scanning units as measured by a time difference measurement unit.
Abstract:
An image reading apparatus includes a drive unit that drives the line image sensor by frequency-modulated clock; a signal generating unit that generates an analog signal according to a change in frequency of the frequency-modulated clock; an amplification-inversion unit that amplifies the analog signal with an arbitrary amplification factor, and configured to switch between inversion and non-inversion; and a signal superimposing unit that superimposes between the analog image signal and an analog signal output from the amplification-inversion unit.
Abstract:
An optical scanner provided with at least one optical path through which an optical beam emitted from a light source is directed onto a surface of an object for forming an image thereon includes a deflector configured to deflect the optical beam and a curvature adjustment unit. The curvature adjustment unit includes a reflecting mirror configured to reflect the optical beam in a predetermined direction, a holder unit configured to hold the reflecting mirror and including at least one supporter that engages the reflecting mirror, a pressure unit configured to flexibly deform the reflecting mirror in a normal direction relative to a reflecting surface of the reflecting mirror, and a fixing member fixed to at least a portion of the reflecting mirror, configured to fix a position of the holder unit relative to the reflecting mirror in a main scanning direction by contacting at least a portion of the holder unit including the supporter.
Abstract:
A method of diagnosing a state of a horizontal synchronizing signal is provided for an optical scanner, which includes a rotary polygon mirror having a rotation sensor, a control clock competing with a signal of the rotation sensor to control the rotary polygon mirror to a constant speed, a laser beam illuminating the rotary polygon mirror to be used in a scanning operation, and a scanning beam detector detecting the laser scanning beam at a prescribed position and outputting a horizontal synchronizing signal to trigger a control of the scanner. The method includes using the optical scanner, and presetting an effective period of outputting the horizontal synchronizing signal by counting the control clock for the rotary polygon mirror, the counting being triggered by a previous horizontal synchronizing signal.
Abstract:
A frequency modulation apparatus capable of reducing a peak level of a radiation noise of a characteristic frequency band due to an image clock.This frequency modulation apparatus is used in an image formation apparatus having an image bearing body to be scanned by a laser beam, and comprises an auxiliary clock calculating portion for calculating an auxiliary clock period based on a reference clock period and a modulation coefficient, and an image clock generating portion for generating the image clock in which a frequency is different at least in one portion and other portions of an image area on a main scan line to be scanned by the laser beam on said image bearing body based on the initial period value set in advance and said auxiliary clock period, and said image clock generating means perform a frequency modulation so that the frequency of said image clock changes within a predetermined fluctuation.
Abstract:
An image forming apparatus that is capable of scanning at a proper speed at all positions on a main scan line without being affected by variations in the characteristics of a f-θ lens, variations in the laser beam wavelength, irregularities in the rotational speed of a polygon mirror and fluctuations in the characteristics of the f-θ lens due to changes in ambient temperature. An image clock signal for exposure control is generated for each of a plurality of segments obtained by dividing a main scan line on a photosensitive drum scanned by a laser beam, based on a modulation coefficient. The modulation coefficient is corrected based on the detected phase difference between detection timing of the terminating end of the main scan line and generation timing of the last image clock signal for the last segment.
Abstract:
An image forming apparatus including: an optical scanning unit for deflecting and scanning a light on a photosensitive body, the optical scanning unit having: a light source for emitting the light; a deflection section that deflects the emitted light; a driving section that drives the deflection section; and a temperature detecting section that detects the temperature of the driving section or the temperature in vicinity of the driving section; a developing section that develops an electrostatic latent image by depositing a developer on the electrostatic latent image formed on a surface of the photosensitive body by the optical scanning unit; a transfer section that transfers the developer deposited on the surface of the photosensitive body to a recording medium; and a controller for changing a drive speed of the driving section based on the temperature detected by the temperature detecting section.