Abstract:
An image processing apparatus, when correcting image data using correction information, corrects skew of the image in the sub-scanning direction that is formed by the image forming unit by correcting the image data also at an end portion of an area where an image forming unit forms the image.
Abstract:
A method and apparatus of correcting image distortion using an orthogonal transfer charge-coupled device array is provided. A wide field of view line-scan remote sensing system includes an array of orthogonal transfer charge-coupled devices (OTCCDs) configured to record image data of an optical image of a moving object received from a lens. Further, the system includes a processor coupled to the array of OTCCDS, in which the processor is configured to scan the optical image across the array of OTCCDs; and shift pixel charges along a first axis and a second axis that substantially matches an actual image motion of the moving object while the optical image is being scanned in order to reduce an amount of image distortion across the array of OTCCDs.
Abstract:
An image processing apparatus includes a forming unit configured to form, on a sheet, a pattern from which at least two lines each connecting two points located at positions parallel to a conveyance direction of the sheet are detectable, a detection unit configured to detect, from the pattern formed by the forming unit, at least two lengths of lines each connecting two points located at positions parallel to the conveyance direction, and an acquisition unit configured to acquire a correction value used when correction is performed so that there is no difference between the lengths of a plurality of lines detected by the detection unit. The forming unit forms an image obtained by correcting a corrected image to be output using the correction value acquired by the acquisition unit.
Abstract:
An overhead image-reading apparatus includes a one-dimensional image sensor having imaging elements arranged in parallel to each other and is configured to change an angle between an optical axis of a light source and a medium to be read during reading of the medium, and the apparatus includes a correcting unit that corrects distortion in a main-scanning direction in read image data of the medium read by the apparatus.
Abstract:
Systems and methods are described that facilitate compensating for slow scan direction displacement (e.g., skew and/or bow) defects in a raster line using slow-scan electronic registration. Input image data is buffered at low-resolution (e.g., 600 spi or the like). Displacement compensation is performed as the low-resolution contone image data is converted to high-resolution (e.g., 2400 spi or the like), and a displaced (e.g., staggered) halftoning threshold array is indexed to account for detected displacement. Displacement compensation is again performed during conversion of the high-resolution contone image data to high-resolution binary image data that is used to generate an output image.
Abstract:
An image forming apparatus includes a scanning unit which scans a light beam on a photosensitive member in accordance with image data, and a smoothing unit which performs a smoothing for a jaggy of a scan line of a light beam scanned on the photosensitive member by the scanning unit. The smoothing unit does not perform the smoothing when the scanning unit scans a light beam in accordance with image data representing a halftone image.
Abstract:
Systems, apparatuses, and methods for an adaptive filter scheme in handheld positioning device are described herein. The adaptive filter scheme may determine a direction that the positioning device is traveling and adjust one or more parameters of the filter scheme based at least in part on the determined direction. Other embodiments may be described and claimed.
Abstract:
The present invention relates to a method for changing a calibration of a recording apparatus (10) to adjust for geometric distortion comprising: providing a media support (12) for receiving recording media (17); operating a recording head (16) comprising a plurality of individually addressable recording channels (23) to form at least one image feature on the recording media while the recording media is positioned with a first orientation (50A) on the media support; positioning the recording media with a second orientation (50B) on the media support, wherein the second orientation is different from the first orientation; detecting distortion in the at least one image feature while the recording media is positioned with the second orientation on the media support; and adjusting activation timing of a portion of the recording channels in accordance with the detected distortion.
Abstract:
Due to an accumulated error from the pair-wise registration, the stitched image may be blurred or have a gap when a loop is encountered. In order to remove the accumulated error, we identify a closed loop where a first image frame overlaps with a second image frame, the second image frame being captured earlier in a scanning sequence than the first image frame; register the first image frame with the second image frame; and apply a global optimization to adjust registration parameters for the plurality of pair-wise registrations of image frames within the closed loop using global constraints.
Abstract:
The present invention relates to a method for changing a calibration of a recording apparatus (10) to adjust for geometric distortion, comprising: providing a media support (12) for receiving recording media (17); providing a carriage (18) adapted for moving along a path; providing a recording head (16) on the carriage; operating the recording head to form a pattern of image features on the recording media while the recording media is positioned with a first orientation (50A) on the media support; positioning the recording media with a second orientation (50B) on the media support, wherein the second orientation is different from the first orientation; detecting distortion in the pattern of image features while the recording media is positioned with the second orientation on the media support; and adjusting movement of the carriage in accordance with the detected distortion.