Abstract:
An image is accurately recorded by a light beam on a PS plate wound on a drum which is rotating at a constant speed. A rotary encoder detects information of a recording position in a main scanning direction by the light beam that is emitted from an optical unit to the PS plate. Based on the detected information, a PLL circuit of a recording synchronizing signal generating unit generates an original clock. Pulses of the original clock are counted by a decimating counter, which outputs a decimating instruction to decimate a pulse from the original clock each time the count reaches a preset count. Based on the decimating instruction, a pulse is decimated from the original clock, and a decimated clock is frequency-divided at a fixed frequency-dividing ratio by a frequency divider, which outputs a pixel clock for recording the image. Since the frequency of the pixel clock is varied by decimating the original clock based on the preset count, the image can accurately be recorded on the PS plate by determining in advance the preset count depending on the positional relationship between the PS plate and the optical unit.
Abstract:
The image recording method and apparatus deflect light from a group of two-dimensionally disposed light source elements to move an image formed on a recording medium in accordance with a movement of the recording medium, or shift modulation data of the group of two-dimensionally disposed light source elements in a first moving direction of the recording medium on the group of two-dimensionally disposed light source elements in synchronism with the movement of the recording medium, and thereby have the image remain stationary relatively to the recording medium in the main scanning direction, as well as shift sequentially modulation data of the group of two-dimensionally disposed light source elements in a direction opposite to a second moving direction of the optical system in synchronism with a movement of the optical system in the auxiliary scanning direction, and thereby having the image also remain stationary relatively to the recording medium in the auxiliary scanning direction.
Abstract:
A memory read control unit (606) reads out image data of one pixel from a memory (603) in synchronism with a clock signal. On the basis of the image data of one pixel, a converting unit (604) converts the density of a corresponding pixel into digital data of a plurality of bits and stores the digital data in a shift register (606). A pixel-piece insertion and deletion control unit (607) inserts data of one bit into the shift register or deletes data of one bit from the shift register. The pixel-piece insertion and deletion control unit (607) estimates a data storing state in the shift register and controls image data read-out from the memory (603) in accordance with the estimated data storing state.
Abstract:
A method of producing an image that can eliminate an fθ lens is provided. This method of producing an image includes producing the image from a plurality of dots with varying intervals that are to be formed by linearly scanning an image forming surface with light that has been modulated using image data for producing by a polygon mirror that rotates at a constant angular velocity, and generating, before the producing the image, the image data for producing to form the image with the plurality of dots with varying intervals from original image data that forms a target output image with a plurality of dots with constant intervals. The step of generating the image data for producing includes setting a state of a first dot included in the plurality of dots with varying intervals at a state of a second dot that is included in the plurality of dots with constant intervals obtained from the original data and is at a position that is close to a position of the first dot.
Abstract:
A frequency modulation device for use in an image forming apparatus. The image formation apparatus includes an image carrier and a laser device for scanning the image carrier along a plurality of scan lines. Each scan line is divided into segments having segment boundaries in which the same segment boundary in adjacent scan lines are offset. The frequency modulation device generates frequency data for use in modulating the input image data, which is utilized by the laser device to scan the image carrier, which permits output of an electrophotograph of high image quality by suppressing segment boundaries caused by moiré fringes or color shifting to below a level at which such boundaries are not visually detectable.
Abstract:
In a frame 12 of an image sensor unit, a lens storage compartment 14 and a linear illuminator storage compartment 32 are adjacently arranged substantially in parallel to each other in the longitudinal direction with an inter-compartment portion 33 interposed therebetween, a pin insertion opening 21 that extends from the lens storage compartment 14 to an outside of the frame is formed, a vertical reference face 23 with which a rod lens array 9 is brought into close contact is formed on the inter-compartment portion 33, and a notch 15 that is used for applying an adhesive 13 is formed so as to be open from the lens storage compartment 14 to the linear illuminator storage compartment 32.
Abstract:
An image forming apparatus includes a light generator (e.g., laser) generating a scanning light beam and a driver driving the light generator depending on a drive signal to be provided. In this apparatus, data formed of image information at each pixel of each line along a main scan direction of an image to be targeted are distributed into a plurality of strings (i.e., channels) of data (e.g., two strings). Concerning each pixel provided by data in each string, information indicative of both a start and an end of modulation (e.g., PWM) is then produced. By using the start and end information, a modulator performs modulation depending on the data of each pixel in each string, providing a modulated signal. The modulated signals from the plural strings are mutually synthesized at synchronizes timings, being provided as the drive signal and given to the driver.
Abstract:
An image forming apparatus includes: a latent image carrier that includes an effective image region which has a predetermined width along a main scanning direction; a latent image forming unit that has a structure in which a deflection mirror surface makes a light beam scan in a second scan region which is wider than a first scan region which corresponds to the effective image region, that modulates the light beam in accordance with an image signal within the range of the first scan region for every scanning cycle, and that guides the modulated light beam onto the effective image region, thereby forming a line latent image which corresponds to the image signal; an optical sensor that detects a scanning light beam, which moves outside the first scan region within the second scan region, to output a signal; and a write timing adjuster that controls the timing of start modulating the light beam and accordingly adjusts a write start position for start writing a latent image along the main scanning direction, based on a time difference between a first detection signal, which the optical sensor outputs as a first light beam scanning away from the effective image region moves passed the optical sensor, and a second detection signal, which the optical sensor outputs after outputting the first detection signal when a second light beam scanning toward the effective image region moves passed the optical sensor.
Abstract:
A pixel clock generating apparatus comprises a data offset circuit and a pixel generator. The data offset circuit defines multiple data blocks, each data block consisting of a predetermined number of successive clocks, and produces phase data for each data block. The phase data represents an amount and a direction of phase shift to be carried out for a certain clock in each data block. The pixel generator receives the phase data from the data offset circuit and generates a phase-shifted pixel clock a predetermined number of times in each data block based on the phase data.
Abstract:
A pixel clock generating apparatus includes a data offset circuit and a pixel generator. The data offset circuit defines multiple data blocks, each data block consisting of a predetermined number of successive clocks, and produces phase data for each data block. The phase data represents an amount and a direction of phase shift to be carried out for a certain clock in each data block. The pixel generator receives the phase data from the data offset circuit and generates a phase-shifted pixel clock a predetermined number of times in each data block based on the phase data.