Abstract:
An image sensor module includes a light source, a light guide elongated in a first direction, a reflector covering the guide, and a light receiver for linear light reflected on a reading target in a second direction perpendicular to the first direction. The guide includes an incident surface for entering light from the light source, a reflecting portion for reflecting, in a direction crossing the first direction, the light from the incident surface, and a surface for emitting light from the reflecting portion as linear light elongated in the first direction. The reflector has an opening and an inclined surface. The opening extends in the first direction to pass the light reflected by the target. The inclined surface, at an end of the opening in the first direction, has a normal which is non-parallel to the first direction and a third direction perpendicular to the first and second directions.
Abstract:
In an illumination device, a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to the area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. An image reading device and an information processing apparatus can also be equipped with the above-mentioned illumination device.
Abstract:
A contact image sensor includes a light sensitive optical detector and a light source mounted on a mounting surface. A light guide is located under the light source and is oriented to direct a light path from the light source to a scan line region under the light sensitive optical detector.
Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which includes a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.
Abstract:
An image reading apparatus is provided for reading out images printed on a document. The apparatus includes a casing elongated in the primary scanning direction and a transparent cover supported by the casing. In image-reading operation, the cover is held in sliding contact with a document at an image reading line. The apparatus further includes an insulating substrate attached to the casing, light sources for illuminating the image reading line, light sensors for receiving reflected light coming from the image reading line and a luminosity adjuster supported by the casing for equalizing luminosity along the image reading line.
Abstract:
An image reading apparatus includes a plurality of light-receiving elements, a lens array, and a light-shielding member. All of the light-receiving elements are arranged in a single line having an extremity. The light-shielding member covers one or more light-receiving elements disposed at the extremity.
Abstract:
An image reading apparatus having a light guide unit with a light source for applying light to an image reading surface, and a board provided with a photoelectrical conversion element for photoelectrically converting light reflected from the image reading surface into an electrical signal, wherein the light guide unit is supported by the board by making the light guide unit in contact with the board.
Abstract:
An image reading apparatus includes a light source, an elongate light guide member for guiding light emitted from the light source toward an image read line, and a plurality of light receiving elements for receiving light reflected at the image read line. The light guide member includes a first portion, a second portion, and a connecting portion for connecting the first portion and the second portion. The first portion includes a light incidence surface facing the light source for entry of light emitted from the light source, and the light incidence surface is convexly curved widthwise of the light guide member. The second portion includes a light exit surface oriented toward the image read line for emitting light toward the image read line. The connecting portion is narrower than the first portion and the second portion.
Abstract:
An image sensor and image sensor device include: a lighting portion extending in a main scanning direction and emitting light to the object-to-be-read; a rod lens array for imaging light from the object-to-be-read; and a light receiving portion for converting the light imaged by the rod lens array to an electric signal. The lighting portion emits a normally directed light from the normal direction of the object-to-be-read to irradiate a first irradiation region of the object-to-be-read, and an inclined light inclined by a predetermined angle from the normal direction of the object-to-be-read to irradiate a second irradiation region being apart from the first irradiation region in a sub-scanning direction.