Abstract:
A fiberglass termination includes a mounting trough having a base plate and limbs. Front p1ates are fixed to the limbs of the mounting trough, and fiberglass couplings or adapters are arranged in the front plates.
Abstract:
A multi-port cabling system for use in installing cable to an equipment rack or enclosure or within an equipment room or data center includes a cabling assembly comprising at least one connector head having a plurality of ports and at least one cable operatively connected to the plurality of ports. The at least one cable terminates internally within the connector head to operatively couple the cable to the plurality of ports. The system further includes a mounting bracket. The mounting bracket and the connector head are each configured for tool-less attachment of one or more cabling assemblies to the bracket. The mounting bracket is further configured to removably mount to an equipment rack or enclosure, and/or to a wall, to thereby install one or more cables. The cabling assembly and the cabling system help to eliminate on-site cable termination and testing during installation of cables to rack-mounted equipment.
Abstract:
A rack mounted component door system according to the present invention is used in conjunction with a conventional equipment rack to secure components in the rack and to provide access to features of the components positioned away from the front side of the rack. The component door system includes two hinge assemblies that can be attached directly to two opposing vertical members of the front side of a conventional rack. The component door system also includes a panel that can be of conventional configuration or tailored for the component door system. The panel is attached to the two hinge assemblies to extend between the two front side vertical members of the rack.
Abstract:
Remote enclosure systems have now been designed and are described herein that meet the following goals: a) consolidate electrical terminations in one system; b) pre-terminate AC and DC equipment loads before site installation; c) provide multiple access points for facilitating equipment repair and installation; d) are easily configurable and expanded through the use of a modular frame design that accommodates a variety of customized side panels or the attachment of a variety of expansion cabinets; e) are aesthetically functional given the cable entry and routing structure; f) provide exceptional thermal management and g) reduce problems inherent in conventional electronic setups. Remote enclosure systems contemplated generally include: a) a frame system further comprising at least two side panels; b) at least one door coupled to the frame system; c) a cable management top assembly coupled to the frame system; d) at least one removable radiofrequency (RF) management system, such as at least one RF port plate, at least one RF port, at least one RF cable or any other suitable system for managing RF signals and a combination thereof, coupled to at least one of the side panels, coupled to and/or located within the cable management top assembly and/or coupled to and/or located within the frame system or a combination thereof and e) a bottom panel coupled to the frame system. The remote enclosure system may also comprise any number of components suitable for electronics, wireless and cable-based data and telecommunications applications, including air conditioner exhaust member, an air conditioner unit, a battery pack, a meter base, a power receptacle box, an alarm system or alarm device, an expansion cabinet, a coupling device or system, a pre-wiring system and/or a demarcation component.
Abstract:
The patch panel assembly includes a drawer and a patch panel pivotally mounted to the drawer. The drawer has a pair of sidewalls and a cable tray positioned therebetween. The cable tray has a plurality of slide locks including lock releases that allow the cable tray to move between a closed position and an open position with respect to the sidewalls. The cable tray also has a plurality of retainer clips that allow the patch panel to move between an upright position and a rotated position with respect to the cable tray.
Abstract:
Cable managers of the present invention include a panel, at least two adjacent spaced-apart projections, which define an opening therebetween, and a tab connected to at least one of the projections. The tab assists in cable routing and retention. In one embodiment, the tab extends to a distance at least midway between a top surface of the one projection and the bottom surface of the other projection. In another embodiment, a distance between a top surface of the tab on one projection and the bottom surface of another adjacent projection is between about 0.10 inches and about 0.30 inches. In yet another embodiment, a cable manager comprises separable portions, and at least one spacer member which is adapted to be attached to each of separable first and second portions. The spacer member increases the width of the manager to provide additional space to run cable within the manager.
Abstract:
A patch panel is disclosed. The patch panel includes a frame, a faceplate mountable into a rear side of the frame, and at least one modular jack mountable into a rear side of the faceplate. The frame has a plurality of faceplate openings, and the faceplate has a plurality of mounting opening. Each mounting opening has at least one modular jack retention latch. A method for assembling a patch panel is also disclosed.
Abstract:
Cable managers of the present invention include a panel, at least two adjacent spaced-apart projections, which define an opening therebetween, and a tab connected to at least one of the projections. The tab assists in cable routing and retention. In one embodiment, the tab extends to a distance at least midway between a top surface of the one projection and the bottom surface of the other projection. In another embodiment, a distance between a top surface of the tab on one projection and the bottom surface of another adjacent projection is between about 0.10 inches and about 0.30 inches. In yet another embodiment, a cable manager comprises separable portions, and at least one spacer member which is adapted to be attached to each of separable first and second portions. The spacer member increases the width of the manager to provide additional space to run cable within the manager.
Abstract:
A cable management apparatus includes a first cable management member. A second cable management member is pivotally coupled to the first cable management member such that the first cable management member and the second cable management member are moveable between an extended position and a retracted position, whereby the second cable management member is positioned in a vertically stacked orientation above the first cable management member in the retracted position. The cable management apparatus may be coupled to an information handling system rack in order to manage the cables for an information handling system while using a minimal amount of space behind the information handling system.
Abstract:
A telecommunications chassis, module, and repeater circuit for use with signals having data rates including STM-1 (155.52 megabits per second) are disclosed. The chassis provides structures for establishing shielding and heat dissipation for the circuitry modules it contains including an outer and an inner Faraday box with an integrated ventilation pattern for circulating air. The module provides its own structures for establishing shielding and heat dissipation including a Faraday box and a ventilation pattern. The repeater circuit provides the ability to bridge a data signal between a monitor jack of one device and a higher signal level input jack of another device through multiple amplification stages and circuit board structures. The telecommunications chassis, module, and repeater circuit can be used in conjunction.