Abstract:
A cable management rack is provided within which or upon which a heat-generating device is mountable, and which encompasses a vertical rectangular frame open in a front and a rear of the frame. The rack includes a first upright and a second upright attached to opposite respective lateral sides of a base and a top member, and respective side-facing panels. Each of the panels defines a plurality of vent holes arranged in an array and permit the rack to receive a sideways flow of cooling air into a first side of the rack through one of the vent hole arrays for cooling a heat-generating device mounted between the panels, and permit the rack to discharge a sideways flow of exhaust air through the other vent hole array. Each of the array of vent holes may manifest a honeycomb pattern of vent holes, and each of the vent holes may manifest an hexagonal shape. A cable management system includes a cable management rack for accommodating a heat generating device, a first baffle mounted with respect to a first upright of the rack and for redirecting a rearward flow of cool air sideways from a space adjacent a front side of the rack, and a second baffle mounted with respect to a second upright of the rack and for redirecting a sideways flow of exhaust air from the rack and through the second upright into a space adjacent a rear side of the rack. A method of cooling a heat-generating device mounted in or on a cable management rack includes providing a sideways flow of cooling air into the rack and into the device.
Abstract:
A telecommunications chassis, module, and repeater circuit for use with signals having data rates including STM-1 (155.52 megabits per second) are disclosed. The chassis provides structures for establishing shielding and heat dissipation for the circuitry modules it contains including an outer and an inner Faraday box with an integrated ventilation pattern for circulating air. The module provides its own structures for establishing shielding and heat dissipation including a Faraday box and a ventilation pattern. The repeater circuit provides the ability to bridge a data signal between a monitor jack of one device and a higher signal level input jack of another device through multiple amplification stages and circuit board structures. The telecommunications chassis, module, and repeater circuit can be used in conjunction.
Abstract:
Remote enclosure systems have now been designed that meet the following goals: a) consolidate electrical terminations in one system; b) pre-terminate AC and DC equipment loads before site installation; c) provide multiple access points for facilitating equipment repair and installation; d) are easily configurable and expanded through the use of a modular frame design that accommodates a variety of customized side panels or the attachment of a variety of expansion cabinets; e) are aesthetically functional given the cable entry and routing structure; f) provide exceptional thermal management and g) reduce problems inherent in conventional electronic setups. Remote enclosure systems contemplated generally include: a) a frame system further comprising at least two side panels; b) at least one door coupled to the frame system; c) a cable management top assembly coupled to the frame system; d) at least one removable radiofrequency (RF) management system and e) a bottom panel coupled to the frame system.
Abstract:
An apparatus for containing objects, such as electronic circuit cards, and a method for making the same, the apparatus having a housing; at least one case disposed within the housing, the case adapted to confine the objects to different locations within the housing and comprising a frame, the region within the frame divided into two regions by a first partition, each of the two regions divided into a plurality of sections by a plurality of second partitions, each of the second partitions thermally coupled to the frame and the first partition, each of the sections divided into a plurality of slots, each slot having an object disposed therein for thermal contact between the first partition, a second partition, and one of a second partition and the frame; and at least one heat sink adapted to absorb heat from the case, the heat sink thermally coupled to the case and the housing.
Abstract:
A telecommunications chassis, module, and repeater circuit for use with signals having data rates including STM-1 (155.52 megabits per second) are disclosed. The chassis provides structures for establishing shielding and heat dissipation for the circuitry modules it contains including an outer and an inner Faraday box with an integrated ventilation pattern for circulating air. The module provides its own structures for establishing shielding and heat dissipation including a Faraday box and a ventilation pattern. The repeater circuit provides the ability to bridge a data signal between a monitor jack of one device and a higher signal level input jack of another device through multiple amplification stages and circuit board structures. The telecommunications chassis, module, and repeater circuit can be used in conjunction.
Abstract:
An apparatus for containing objects, such as electronic circuit cards, and a method for making the same, the apparatus having a housing; at least one case disposed within the housing, the case adapted to confine the objects to different locations within the housing and comprising a frame, the region within the frame divided into two regions by a first partition, each of the two regions divided into a plurality of sections by a plurality of second partitions, each of the second partitions thermally coupled to the frame and the first partition, each of the sections divided into a plurality of slots, each slot having an object disposed therein for thermal contact between the first partition, a second partition, and one of a second partition and the frame; and at least one heat sink adapted to absorb heat from the case, the heat sink thermally coupled to the case and the housing.
Abstract:
A rack assembly includes a nineteen-inch sub-assembly coupled to a four-inch extension that comprises two substantially closed side panels adjacent to each other, two substantially open sides adjacent to each other, a closed top and bottom, a plurality of mounting flanges for attaching the extension to a nineteen-inch sub-assembly and a plurality of embossments for receiving mounting hardware for installing the sub-assembly and extension into a twenty-three-inch rack. The four-inch extension is formed not only to allow a nineteen-inch rack sub-assembly to be installed in a twenty-three-inch rack, but also is formed to conduct air exhausted from a side of the nineteen-inch sub-assembly towards a rear end of the twenty-three-inch rack.
Abstract:
A chassis arrangement that minimizes lateral flame spread from card to card within the chassis, and increases heat dissipation from the chassis, comprising a heat sink attached to the inside of the chassis cover to dissipate excess heat from within the chassis, and PCB shields disposed between the circuit cards of the chassis and acting in concert with the heat sink to act as physical and thermal barriers to prevent lateral flame spread from card to card due to flame and hot gas wrap-around.
Abstract:
The invention refers to a telecommunications system comprising a module rack that defines a core bay, a service plane and a rack interface plane where the service plane is transverse to the rack interface plane. The core bay is in part bounded by the service plane and the rack interface plane. The telecommunications system also comprises a series of electronics modules each defining an electronics orientation plane where each of the modules includes two opposed cooling surfaces oriented substantially parallel to the electronics orientation plane. Each of the electronics modules is removably secured within the core bay. The series of the electronics modules forms an array such that their electronics orientation planes are substantially perpendicular to both the rack interface plane and the service plane. The array also defines at least one coolant stream passage across each cooling surface. Further the telecommunications system includes a coolant movement means for moving a coolant through the coolant stream passages and across the rack interface plane. As such, the coolant convects heat away from the cooling surfaces of electronics modules more efficiently and effectively than found in the prior art as it, amongst other things, shortens the distance over which the inlet coolant is required to travel to cool the same functional density and provides a coolant to the passage at approximately a uniform temperature for each module.
Abstract:
The compact PCI cabinet includes an inlet port for receiving external air, a set of blowers for drawing the air into the cabinet and for expelling the air from an exhaust port of the cabinet after having cooled internal active circuits, and a plurality of louvers and openings that create thermal convection within a back portion of the compact PCI cabinet to cool active components coupled to the back side of the back plain of the compact PCI system. Additionally, a plurality of perforated air openings located approximately at the bottom and back side of a side panel of the compact PCI cabinet also is included to conduct an receive some air from the external environment. Openings are formed between a plurality of card guides located approximately at the top of the back side of the back portion of the PCI cabinet for conducting air in and out of the back portion of the cabinet. A pin field coupled to a heat sink is placed in the air path between the blowers and the openings through which the air may be conducted into the back portion of the compact PCI cabinet to reduce the exhaust air temperature. Finally, the invention includes a thermistor placed in the exhaust path so that the fan speed of the blowers maybe adjusted according to the temperature of the exhaust after passing through the pin field.