Abstract:
A key device for an electronic input keyboard including a key head mounted in a housing so as to be displaceable therein between two positions, a light emitting element, a light sensitive element energized by a light beam from the light emitting element, both mounted in the housing, and a light interrupting element associated with the key head for interrupting the light beam in one of the two positions of the key head.
Abstract:
A photoelectric switch unit comprising a single source of light, a plurality of photoelectric elements each so arranged as to receive light from the light source and a plurality of shutters each interposed between the light source and one of the photoelectric elements to normally block the light, each of the shutters being so arranged as to be selectively movable individually and independently of the other shutters from the path of the light to permit the light to enter and actuate the corresponding one of the photoelectric elements. The single source of light, each of the photoelectric elements and each of the shutters are associated to form one photoelectric switch, and there are a plurality of such switches included in the switch unit, the operation of each of which is performed individually and independently of the other switches in the unit.
Abstract:
Techniques for solar cell electrical characterization are provided. In one aspect, a solar testing device is provided. The device includes a solar simulator; and a continuous neutral density filter in front of the solar simulator having regions of varying light attenuation levels ranging from transparent to opaque, the continuous neutral density filter having an area sufficiently large to filter all light generated by the solar simulator, and wherein a position of the continuous neutral density filter relative to the solar simulator is variable so as to control a light intensity produced by the device. A solar cell electrical characterization system and a method for performing a solar cell electrical characterization are also provided.
Abstract:
A light valve module and a projection device using thereof are provided. The projection device includes a chassis, a light source, a projection lens, the light valve module and a fastener assembly. The light valve module is configured within a cavity of the chassis by the fastener assembly and disposed on a transmission path of a light beam so as to convert the light beam to an image light beam. The light valve module includes a field lens, a light valve component and an elastic frame. First and second surfaces of the elastic frame respectively contact the field lens and the light valve component. A recess of the elastic frame is located on one of the first surface and the second surface. A pressed portion of the elastic frame is deformed towards the recess when the field lens and the light valve component press the elastic frame.
Abstract:
Techniques for solar cell electrical characterization are provided. In one aspect, a solar testing device is provided. The device includes a solar simulator; and a continuous neutral density filter in front of the solar simulator having regions of varying light attenuation levels ranging from transparent to opaque, the continuous neutral density filter having an area sufficiently large to filter all light generated by the solar simulator, and wherein a position of the continuous neutral density filter relative to the solar simulator is variable so as to control a light intensity produced by the device. A solar cell electrical characterization system and a method for performing a solar cell electrical characterization are also provided.
Abstract:
The invention is directed to a screen-printable getter composition comprising: (a) glass frit; dispersed in (b) organic medium. The invention is further directed to a screen-printable thick film getter composition comprising: (a) glass frit; and (b) desiccant material; dispersed in (c) organic medium.The present invention further relates to a getter composition utilizing low-softening temperature glasses comprising, based on weight %, 1-50% SiO2, 0-80% B2O3, 0-90% Bi2O3, 0-90% PbO, 0-90% P2O5, 0-60% Li2O, 0-30% Al2O3, 0-10% K2O, 0-10% Na2O, and 0-30% MO where M is selected from Ba, Sr, Ca, Zn, Cu, Mg and mixtures thereof. The glasses described herein may contain several other oxide constituents that can substitute glass network-forming elements or modify glass structure.
Abstract translation:本发明涉及一种可丝网印刷的吸气剂组合物,其包括:(a)玻璃料; 分散在(b)有机介质中。 本发明还涉及一种可丝网印刷的厚膜吸气剂组合物,其包含:(a)玻璃料; 和(b)干燥剂材料; 分散在(c)有机介质中。 本发明还涉及一种使用低软化温度的玻璃的吸气剂组合物,该组合物的重量百分数为1-50%SiO 2,0-80%B 2 O 3,0-90%Bi 2 O 3,0-90%PbO,0-90% P 2 O 5,0-60%Li 2 O,0-30%Al 2 O 3,0-10%K 2 O,0-10%Na 2 O和0-30%MO,其中M选自Ba,Sr,Ca,Zn,Cu,Mg和混合物 其中。 本文所述的玻璃可以包含可以代替玻璃网络形成元件或改变玻璃结构的几种其它氧化物成分。
Abstract:
The invention is directed to a process for making screen-printable getter composition comprising: (a) glass frit; and (b) pre-hydrated desiccant material; dispersed in (c) organic medium. The present invention further relates to a getter composition utilizing low-softening temperature glasses comprising, based on weight %, 1-50% SiO2, 0-80% B2O3, 0-90% Bi2O3, 0-90% PbO, 0-90% P2O5, 0-60% Li2O, 0-30% Al2O3, 0-10% K2O, 0-10% Na2O, and 0-30% MO where M is selected from Ba, Sr, Ca, Zn, Cu, Mg and mixtures thereof. The glasses described herein may contain several other oxide constituents that can substitute glass network-forming elements or modify glass structure.The desiccant material is pre-hydrated to reach its saturation level of moisture absorption. The process of pre-hydration can be done by exposing the desiccant in a normal temperature/humidity environment of for example, 25° C. and 50-60% RH. For 24 to 48 hours or up to the time when weight gain (due to moisture absorption) stops increasing. An accelerated hydration process in a chamber with higher than normal humidity level (i.e. 50% Relative Humidity) is also applicable to shorten the time of exposure to fully hydrate the desiccant material.
Abstract translation:本发明涉及一种制备可印版吸气剂组合物的方法,包括:(a)玻璃料; 和(b)预水化干燥剂材料; 分散在(c)有机介质中。 本发明还涉及一种使用低软化温度的玻璃的吸气剂组合物,该组合物的重量百分数为1-50%SiO 2,0-80%B 2 O 3,0-90%Bi 2 O 3,0-90%PbO,0-90% P 2 O 5,0-60%Li 2 O,0-30%Al 2 O 3,0-10%K 2 O,0-10%Na 2 O和0-30%MO,其中M选自Ba,Sr,Ca,Zn,Cu,Mg和混合物 其中。 本文所述的玻璃可以包含可以代替玻璃网络形成元件或改变玻璃结构的几种其它氧化物成分。 干燥剂材料预水合以达到其饱和吸湿水平。 预水合的过程可以通过在例如25℃和50-60%RH的常温/湿度环境中暴露干燥剂来进行。 24至48小时或直至体重增加(由于吸湿)停止增加的时间。 具有高于正常湿度水平(即50%相对湿度)的室中的加速水化过程也适用于缩短暴露于充分水合干燥剂材料的时间。
Abstract:
A radiation pulse, such as from a solar simulator, is spectrally analyzed over a selected sampling pulse that is shorter in duration than the radiation pulse and is timed to begin after the start of the radiation pulse. A deformable membrane mirror is controlled to function as a high speed shutter in the path of the radiation pulse. When not deformed, the mirror reflects the radiation pulse into an optical instrument, such as a spectroradiometer. A sampling pulse is generated for a selected time after the start of the radiation pulse and is applied to the mirror to ensure total reflection of the radiation pulse only for the duration of the sampling pulse. Controls are provided to adjust the start time and duration of the sampling pulse, and to adjust the sensitivity of sensing the start of the radiation pulse.
Abstract:
A reflective optical position or object detector, containing a light source (LED) and detector (phototransistor) is placed proximate to an acoustic membrane such that the output of the detector produces an electric signal corresponding to the motion of the membrane toward and away from the detector. Groups of these detectors can be placed at different locations under a single membrane to reproduce the frequency and harmonic content of the motion of the membrane at those locations, and the signals from each can be combined in variable proportion to a resultant electrical signal. These groups can be bounded by isolating frames and several bounded groups can be placed under a single membrane, or be covered by separate membranes. The groups with their bounding frames can be moved toward or away from the membrane, placing more or less tension upon the membrane, thereby altering the harmonic and frequency content of its vibration.
Abstract:
To detect a faulty operation in a non-contact switch, a pulse signal is applied to the light emitting element of non-contact switch. The thus input pulse signal is compared with an output signal generated by a light receiving element of the non-contact switch. The faulty operation of the non-contact switch is discriminated in accordance with the thus compared input and output signals. Also to detect a faulty operation of the non-contact switch, a switch assembly includes a main push-button and an auxiliary push-button concentrically located over and within the main push-button. When the main push-button operates properly, the blocking members associated with the main push-button and the auxiliary push-button are displaced together. On the other hand, when the main push-button malfunctions, the light blocking member of the auxiliary push-button blocks the passage of light within the non-contact switch. Thus, an erroneous operation resulting from jamming of the main push-button is prevented.