Abstract:
The invention is directed to a process for making screen-printable getter composition comprising: (a) glass frit; and (b) pre-hydrated desiccant material; dispersed in (c) organic medium. The desiccant material is pre-hydrated to reach its saturation level of moisture absorption. The process of pre-hydration can be done by exposing the desiccant in a normal temperature/humidity environment of for example, 25° C. and 50-60% RH. For 24 to 48 hours or up to the time when weight gain (due to moisture absorption) stops increasing. An accelerated hydration process in a chamber with higher than normal humidity level (i.e. 50% Relative Humidity) is also applicable to shorten the time of exposure to fully hydrate the desiccant material.
Abstract:
The invention is directed to a screen-printable getter composition comprising: (a) glass frit; dispersed in (b) organic medium. The invention is further directed to a screen-printable thick film getter composition comprising: (a) glass frit; and (b) desiccant material; dispersed in (c) organic medium.The present invention further relates to a getter composition utilizing low-softening temperature glasses comprising, based on weight %, 1-50% SiO2, 0-80% B2O3, 0-90% Bi2O3, 0-90% PbO, 0-90% P2O5, 0-60% Li2O, 0-30% Al2O3, 0-10% K2O, 0-10% Na2O, and 0-30% MO where M is selected from Ba, Sr, Ca, Zn, Cu, Mg and mixtures thereof. The glasses described herein may contain several other oxide constituents that can substitute glass network-forming elements or modify glass structure.
Abstract translation:本发明涉及一种可丝网印刷的吸气剂组合物,其包括:(a)玻璃料; 分散在(b)有机介质中。 本发明还涉及一种可丝网印刷的厚膜吸气剂组合物,其包含:(a)玻璃料; 和(b)干燥剂材料; 分散在(c)有机介质中。 本发明还涉及一种使用低软化温度玻璃的吸气剂组合物,其基于重量百分比为1-50%SiO 2,0-80%B 2 O 0〜90%的Bi 2 O 3,0〜90%的PbO,0〜90%的P 2 SUB O 5,0-60%的Li 2 O,0-30%的Al 2 O 3,0 -10%K 2 O,0-10%Na 2 O和0-30%MO,其中M选自Ba,Sr,Ca,Zn,Cu, Mg及其混合物。 本文所述的玻璃可以包含可以代替玻璃网络形成元件或改变玻璃结构的几种其它氧化物成分。
Abstract:
An optical aperture is fabricated by providing a pressing body and object having a substrate, at least one conical- or pyramidal-shaped tip disposed on the substrate, at least one stopper disposed on the substrate at a vicinity of the tip, and an optical shielding film disposed on at least a portion of each of the stopper and the tip. A surface of the pressing body is then disposed in confronting relation to the object. The pressing body is then displaced to bring the surface of the pressing body in contact with the object so that a force component is directed to a front end of the tip to form an optical aperture at the front end of the tip.
Abstract:
A light valve module and a projection device using thereof are provided. The projection device includes a chassis, a light source, a projection lens, the light valve module and a fastener assembly. The light valve module is configured within a cavity of the chassis by the fastener assembly and disposed on a transmission path of a light beam so as to convert the light beam to an image light beam. The light valve module includes a field lens, a light valve component and an elastic frame. First and second surfaces of the elastic frame respectively contact the field lens and the light valve component. A recess of the elastic frame is located on one of the first surface and the second surface. A pressed portion of the elastic frame is deformed towards the recess when the field lens and the light valve component press the elastic frame.
Abstract:
The invention is directed to a screen-printable getter composition comprising: (a) glass frit; dispersed in (b) organic medium. The invention is further directed to a screen-printable thick film getter composition comprising: (a) glass frit; and (b) desiccant material; dispersed in (c) organic medium.The present invention further relates to a getter composition utilizing low-softening temperature glasses comprising, based on weight %, 1-50% SiO2, 0-80% B2O3, 0-90% Bi2O3, 0-90% PbO, 0-90% P2O5, 0-60% Li2O, 0-30% Al2O3, 0-10% K2O, 0-10% Na2O, and 0-30% MO where M is selected from Ba, Sr, Ca, Zn, Cu, Mg and mixtures thereof. The glasses described herein may contain several other oxide constituents that can substitute glass network-forming elements or modify glass structure.
Abstract translation:本发明涉及一种可丝网印刷的吸气剂组合物,其包括:(a)玻璃料; 分散在(b)有机介质中。 本发明还涉及一种可丝网印刷的厚膜吸气剂组合物,其包含:(a)玻璃料; 和(b)干燥剂材料; 分散在(c)有机介质中。 本发明还涉及一种使用低软化温度的玻璃的吸气剂组合物,该组合物的重量百分数为1-50%SiO 2,0-80%B 2 O 3,0-90%Bi 2 O 3,0-90%PbO,0-90% P 2 O 5,0-60%Li 2 O,0-30%Al 2 O 3,0-10%K 2 O,0-10%Na 2 O和0-30%MO,其中M选自Ba,Sr,Ca,Zn,Cu,Mg和混合物 其中。 本文所述的玻璃可以包含可以代替玻璃网络形成元件或改变玻璃结构的几种其它氧化物成分。
Abstract:
An object detecting system, which is installed in a vehicle, uses a camera comprising an optical lens, a distance measuring image chip, and an illumination device to detect information about an object occupying a vehicle seat. The light emitting mode of a first illuminant and a second illuminant of the illumination device is controlled in such a manner that the quantity of incident light onto the distance measuring image chip is equalized to respective portions in the focusing area.
Abstract:
A switching device includes a contact movable between two positions, to selectively open and close an electrical path, and a multicolor light emitting diode for indicating different positions of the contact by respectively different colors. The multicolor light emitting diode directs a light beam which is reflected from the contact in accordance with its position on one of two light sensors. The color of the light beam is controlled in accordance with the outputs of the light sensors.
Abstract:
A position sensor includes a light source, and a light-emitting optical fiber having an insertion end that receives a light input from the light source, and a plurality of light emitters disposed along an emitting length of a lateral surface of a lateral surface of the light-emitting optical fiber. A light-collecting-and-detecting structure is operable to receive light from each of the plurality of light emitters of the light-emitting optical fiber. The light-collecting-and-detecting structure preferably includes a light detector, and a light-collecting optical fiber in a parallel but spaced-apart relation to the light-emitting optical fiber. The light-collecting optical fiber has an extraction end that provides a light output to the light detector, and a plurality of light collectors disposed along a collecting length of a lateral surface of the light-collecting optical fiber in a facing relation to the light emitters of the light-emitting optical fiber. An opaque light shield is disposed between and movable parallel relative to the light-emitting optical fiber and the light-collecting-and-detecting structure, so that a movement of the light shield progressively changes the number of light emitters that are exposed to the light-collecting-and-detecting structure.
Abstract:
The invention relates to a shutter for an optical imaging system, e.g. a digital camera. The shutter comprises an interface between a transparent body and a capillary space. Light rays introduced to the active area of the interface are reflected by total internal reflection when the capillary space is filled with a gas. The light rays are transmitted through the interface when the capillary space is rapidly filled with a liquid. Thus, the light rays are either absorbed or reflected towards an image sensor, depending on the state of the shutter. The liquid is delivered to the capillary space through at least one duct which is positioned opposite the active area.
Abstract:
In one embodiment, light is detected using a photodetector. If the detected light is causing the photodetector to saturate, one or more liquid crystal light valves are adjusted to filter the amount of incident light on the photodetector.