Abstract:
A near-field optical probe has a hole penetrating through a substrate and defining a microscopic aperture at an apex thereof for generating or scattering near field light. The probe is simple and inexpensive to produce and may be manufactured in an array form by forming plural holes in the substrate so that it may be used in an optical memory device. A lens is disposed above the microscopic aperture for focusing incident light and a light source is arranged thereover to introduce light to the lens. A focal point of the lens is positioned at the microscopic aperture, so that the light emitted by the light source can be efficiently collected at the microscopic aperture. The structure can be mass produced using known silicon processing techniques, thus being adapted for use as an optical memory head.
Abstract:
A MEM s scanning device has a variable resonant frequency. In one embodiment, the MEMs device includes a torsion arm that supports an oscillatory body. In one embodiment, an array of removable masses are placed on an exposed portion of the oscillatory body and selectively removed to establish the resonant frequency. The material can be removed by laser ablation, etching, or other processing approaches. In another approach, a migratory material is placed on the torsion arm and selectively stimulated to migrate into the torsion arm, thereby changing the mechanical properties of the torsion arm. The changed mechanical properties in turn changes the resonant frequency of the torsion arm. In another approach, symmetrically distributed masses are removed or added in response to a measured resonant frequency to tune the resonant frequency to a desired resonant frequency. A display apparatus includes the scanning device and the scanning device scans about two or more axes, typically in a raster pattern. Various approaches to controlling the frequency responses of the scanning device are described, including active control of MEMs scanners and passive frequency tuning.
Abstract:
An apparatus (1) for optical inspection of an article(s) is presented. The apparatus utilizes near-field illumination, and comprises a light source unit (4) generating incident light, a detector unit (14), a fiber bundle for directing (16C) the incident light onto a substantially large surface area (2A) of the article and collecting light (16B) returned from the illuminated surface area, and a control means (28). The control means comprises sensing means consisting of at least three tips for atomic force (AFM) or current tunneling (STM) measurement at sample surface, and is capable of adjusting the position of the fiber bundle relative to the surface of the article.
Abstract:
In a multibeam scanner, the resolution switching circuit 91 of the control unit 9 transmits a control signal to the motor drive circuit 92 and controls the motor drive circuit 92 to rotate the drive motor 78 at a velocity corresponding to the resolution. The resolution switching circuit 91 transmits a resolution signal to the image generation circuit 93 and controls the image generated circuit 93 to generate output image data that conforms to the resolution. The LD1 control circuit 95 and the LD2 control circuit 96 are modulated by the modulation circuit 94 to oscillate the laser diodes LD1 and LD2 based on the output image data. When performing exposure at a low resolution, the rearmost scanning line SL2 in the previous group of lines and the forwardmost scanning line SL1 in the following group of scanning lines are exposed according to the same image signal, thereby preventing a loss of image quality by preventing open areas of the interval I2 between scanning lines from becoming noticeable.
Abstract:
A scanning microscope (100) possesses at least one illumination source (4), an objective (10), and at least one detector (12). An optical circulator (14) is arranged between the at least one illumination source (4), the objective (10), and the at least one detector (12). In a further embodiment, the scanning microscope (100) is configured as a confocal scanning microscope.
Abstract:
A laser illumination apparatus for illuminating a semiconductor film with a linear laser beam while scanning the semiconductor film with the linear laser beam. An optical system generates a linear laser beam having a beam width W by dividing a pulse laser beam that is emitted from a pulsed laser light source into a plurality of beams vertically and horizontally, and combines divisional beams after they have been processed into a linear shape individually. A mechanism is provided to move a substrate that is mounted with the semiconductor film. A condition W/20≦&Dgr;(r)≦x≦W/5 or &Dgr;(r)≦W/20≦x≦W/5 is satisfied, where r is a height difference of the surface of the semiconductor film, &Dgr;(r) is a variation amount of the beam width W as a function of the height difference r, and x is a movement distance of the substrate during an oscillation period of the pulsed laser light source.
Abstract:
The invention provides a device for linear scanning, including at least one reflecting element whereby an incident beam of light undergoes at least two reflections; at least one optical system comprising an objective capable of forming an image of an object, the objective, depending on the respective direction of the light beam, defining a pre-objective scanning space and a post-objective scanning space; a mounting structure for the at least one reflecting element; drive means for causing the mounting structure to perform a movement; and a light-detecting element for detecting the incident beam of light, or an element for producing light, wherein, with light-detecting, scanning takes place in the post-objective space, and with light-producing, scanning takes place in the pre-objective space.
Abstract:
A method of mounting an optical sensor package, in which the optical sensor package includes a chip on which an optical sensor is formed, where a part of the chip is exposed, including the steps of forming in a mounting member a concave portion corresponding to the outer shape of the exposed chip portion, and fitting and fixing the exposed chip portion into the concave portion of the mounting member.
Abstract:
An optical scanning apparatus is constructed to detect one or more defective or damaged light emitting devices of a light source unit and forms images having substantially the same quality as that of the images formed when all of a plurality of light emitting devices of a light source of the apparatus are functioning normally even when any one of the plurality of light emitting devices are damaged or broken, without decreasing the image forming performance of the apparatus. The optical scanning apparatus detects one or more damaged or broken light emitting devices and then compensates for the light omitted due to the damaged or broken light emitting devices using the normally functioning light emitting devices without decreasing the image forming speed or quality of the optical scanning apparatus. In order to compensate for a defective light emitting device, the optical scanning apparatus uses various solutions such as increasing the rotating speed of the deflector while increasing the modulation speed of the light emitting devices by the same amount, increasing beam spot diameter in the subscanning direction, changing the output power of the light emitting devices on a surface to be scanned in order to increase beam spot diameter in the main scanning direction and the subscanning direction, and changing the focal length of the line image forming optical apparatus and increasing either the rotation speed of the deflector or the rotation speed of the surface to be scanned or photoconductive drum.
Abstract:
An illumination system for selectively illuminating a nonemissive electronic display comprises display elements in communication with at least one light source. The system comprises an nonemissive electronic display comprising a substrate having a first and a second surface, nonemissive display media having electrically responsive optical properties disposed on the first surface of the substrate, and a light transmissive element adjacent the second surface of the substrate. Light transmitted through the light transmissive element illuminates the display media. The invention also provides a tiled display comprising a plurality of substrates which can be selectively illuminated. The display elements can be tiled to create complex, selectively illuminated, three-dimensional display structures.