Abstract:
A mobile robot that includes a robot body having a forward drive direction, a drive system supporting the robot body above a cleaning surface for maneuvering the robot across the cleaning surface, and a robot controller in communication with the drive system. The robot also includes a bumper movably supported by a forward portion of the robot body and a obstacle sensor system disposed on the bumper. The obstacle sensor system includes at least one contact sensor disposed on the bumper, at least one proximity sensor disposed on the bumper and a auxiliary circuit board disposed on the bumper and in communication with the at least one contact sensor, the at least one proximity sensor, and the robot controller.
Abstract:
A robot cleaner is provided. The robot cleaner includes a main body forming an exterior; a floor detection sensor for detecting a distance from the main body to a floor surface; a tilt sensor for detecting inclination of the main body; and a controller for determining whether there is a protruding part that protrudes from a floor surface in a running path of the main body, based on a first sensor value output by the floor detection sensor and a second sensor value output by the tilt sensor. In accordance with embodiments of the present disclosure, a robot cleaner may properly move around and perform vacuuming by taking into account conditions of a floor surface. It may also smoothly climb over a doorsill and dynamically change its running pattern based on the presence/absence and position of an obstacle in climbing the doorsill.
Abstract:
A mobile robot system for allowing a user to easily input a control command of a mobile robot, and a remote control method for the same are disclosed. The mobile robot system and the remote control method thereof can allow a user to easily input control commands regarding the movement and operation of the mobile robot using the jog-dial interface, such that the possibility of causing input errors can be reduced and desired commands can be quickly and efficiently transmitted, resulting in increased user manipulation of the mobile robot system. When the user enters the rotation command of the mobile robot, the mobile robot system can allow the user to perform intuitive interfacing through shuttle manipulation, such that the mobile robot system can facilitate transmission of a movement command having a circular trajectory and the same mobile robot control as in the user-intended control is achieved, resulting in implementation of emotional interface capable of increasing user accessibility.
Abstract:
Provided is a cleaning device comprising: a camera unit for capturing an image; a cleaning unit for cleaning; an air purification unit for purifying air; a driving unit for moving the cleaning device; and a processor for controlling the camera unit, the cleaning unit, the air purification unit and the driving unit, wherein the processor detects a user by using the camera unit, cleans by moving the cleaning device to a position exceeding a first threshold distance from the detected user when the cleaning device is in a cleaning mode, and purifies the air by moving the cleaning device to a position within a second threshold distance from the detected user when the cleaning device is in an air purification mode.
Abstract:
An autonomous floor cleaning robot includes a body, a controller supported by the body, a drive supporting the body to maneuver the robot across a floor surface in response to commands from the controller, and a pad holder attached to an underside of the body to hold a removable cleaning pad during operation of the robot. The pad includes a mounting plate and a mounting surface. The mounting plate is attached to the mounting surface. The robot includes a pad sensor to sense a feature on the pad and to generate a signal based on the feature, which is defined in part by a cutout on the card backing. The mounting plate enables the pad sensor to detect the feature. The controller is response to the signal to perform operations including selecting a cleaning mode based on the signal, and controlling the robot according to a selected cleaning mode.
Abstract:
A plurality of lockers can each serve to contain items that have been ordered by a customer. By one approach these lockers are stored in a locker storage facility. By one approach these lockers are configured such that a motorized transport unit can physically engage the locker in order to move the locker. So configured, a central computer system can be configured to select a particular motorized transport unit to retrieve a particular locker that has been previously associated with a particular entity (such as a particular customer or their designated agent) and to make that locker available to that particular entity such that the latter can retrieve their item or items from that locker.
Abstract:
Methods and apparatuses are provided for use in monitoring product placement within a shopping facility. Some embodiments provide an apparatus configured to determine product placement conditions within a shopping facility, comprising: a transceiver configured to wirelessly receive communications; a product monitoring control circuit coupled with the transceiver; a memory coupled with the control circuit and storing computer instructions that when executed by the control circuit cause the control circuit to: obtain a composite three-dimensional (3D) scan mapping corresponding to at least a select area of the shopping facility and based on a series of 3D scan data; evaluate the 3D scan mapping to identify multiple product depth distances; and identify, from the evaluation of the 3D scan mapping, when one or more of the multiple product depth distances is greater than a predefined depth distance threshold from the reference offset distance of the product support structure.
Abstract:
Methods and apparatuses are provided, some apparatuses comprise: a location controller separate from a motorized transport unit, comprising: a transceiver configured to receive communications from the motorized transport unit; a control circuit; a memory storing computer instructions that when executed by the control circuit cause the control circuit to perform the steps of: obtain, from the communications, a unique light source identifier of a light source detected by the motorized transport unit, and relative distance information determined by the motorized transport unit through an optical measurement; process the at least one unique light source identifier and the relative distance information relative to a mapping of the shopping facility; and determine, in response to the processing, a location of the motorized transport unit within the shopping facility as a function of the at least one unique light source identifier and the relative distance information.
Abstract:
A housing contains a plurality of motorized transport units in a stacked relationship to one another, with a bottom-most one of the plurality of motorized transport units serving as a locomotion mechanism that selectively causes movement of the housing with the plurality of motorized transport units contained therein. By one approach the aforementioned housing has a cylindrical form factor and includes a cylindrically-shaped chamber configured to receive the motorized transport units By one approach, for example, this housing includes no lifting mechanism to lift any of the motorized transport units into itself and further has no integral locomotion mechanism by which the housing can move itself. The interior of the housing can include at least one track formed therein to receive a corresponding part of each of the plurality of motorized transport units which the motorized transport units can engage to thereby lift themselves into the interior of the housing.
Abstract:
A robot cleaner and a method of performing a human care using the same. Specifically, the robot cleaner can include a main body with a cleaning module, a driving unit to move the main body, one or more cameras to generate image information on a management object, a communication unit to communicate with an external communication device and transmit the image information to the external communication device, and a control unit to recognize the management object and control the robot cleaner such that the management object is included in the image information while following a position change of the management object.