Abstract:
The present invention pertains to a functional patch to be affixed to the skin, with the aim of measuring metabolic disruptions to organs, and general organ functions, of kidneys, liver, heart, pancreas and muscles (lactate), for example—more particularly it concerns the measurement of the glomerular filtration rate (GFR)—and also to a method for producing a functional patch of this kind.
Abstract:
The invention relates to elements of a method (1) for determining a damage characteristic value of a kidney (2). Images comprising the kidney (2) and the kidney artery (3) are entered into the method (1), from a three-dimensional digital subtraction angiography which is carried out by administering a contrast medium at the proximal end of the kidney artery (3) and comprises a fill run and a mask run, said method (1) comprising the following method steps: S1) determining a parenchymal blood volume into which the subtractions from images of the fill run and the mask run of the three-dimensional digital subtraction angiography are entered, additionally determining an arterial input function and normalising the parenchymal blood volume with said arterial input function; S2) segmenting the kidney (2), determining an average normalised parenchymal blood volume value, and determining a total value of the parenchymal blood volume into which the normalised parenchymal blood volume values of the segmentation of the kidney (2) are entered; S3) receiving an average normalised parenchymal blood volume normal value and a total normal value for a parenchymal blood volume, and determining at least one damage characteristic value of the kidney (2) into which the average normalised parenchymal blood volume value and the average normalised parenchymal blood volume normal value and/or the total value of the parenchymal blood volume and the total normal value of a parenchymal blood volume are entered; S4) issuing the at least one damage characteristic value of the kidney (2).
Abstract:
A device for mapping and ablating the renal nerves distributed on the renal artery is provided, said device comprising a guide catheter (11), a mapping-ablation catheter (12), a handle (13) and a connector (15). The guide catheter (11) had at least one lumen and a distal end with adjustable curvature. The mapping-ablation catheter (12) is housed in one of the lumens of the guide catheter (11) and its distal end has one or more electrodes (22) and one or more detecting devices (23). The distal end of the mapping-ablation catheter (12) is curved, rotatable, and can be extended out of or retracted into the guide catheter (11). The handle (13) connects the guide catheter (11) and mapping-ablation catheter (12), and comprises one or more controlling components for controlling the movement of the guide catheter (11) and mapping-ablation catheter (12). The connector (15) is designed to supply energy to the electrodes (22).
Abstract:
A system for conducting denervation of the neural plexus adjacent the renal artery, comprises a pre-shaped ablative element operatively coupled to an elongate deployment member configured to be navigated into the renal artery, the pre-shaped ablative element comprising one or more RF electrodes disposed in an arcuate pattern; and an energy source operatively coupled to the one or more RF electrodes and being configured to cause current to flow from the pre-shaped ablative element and cause localized heating sufficient to denervate nearby neural tissue.
Abstract:
Catheter based ablation devices, systems, and methods for achieving intraluminal and/or transluminal neuromodulation, stimulation or ablation by intraluminal access are disclosed herein. One aspect of the present application, for example, is directed to devices, systems, and methods that incorporate a spiral support frame treatment device on an elongate shaft or as a temporary or permanently implanted therapy device. The elongated shaft is sized and configured to deliver a spiral treatment device to a treatment position via an intravascular path. Intraluminal and transluminal neuromodulation, stimulation or ablation or other therapeutic outcomes may be achieved via energy delivered via the spiral element. One therapy includes modulation of neural fibers that contribute to or alter vascular structures that feed or perfuse the neural fibers.
Abstract:
An intravascular catheter for peri-vascular nerve activity sensing or measurement includes multiple needles advanced through supported guide tubes (needle guiding elements) which expand with open ends around a central axis to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the perivascular space. The system also may include means to limit and/or adjust the depth of penetration of the needles. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall. The addition of an injection lumen at the proximal end of the catheter and openings in the needles adds the functionality of ablative fluid injection into the perivascular space for an integrated nerve sending and ablation capability.
Abstract:
An embodiment of the invention relates to the generation of MR images of a volume section within an examination object by way of a magnetic resonance scanner. In at least one embodiment, the following steps are performed: generating at least one of the MR images; automatically performing a number of quality inspections on the at least one MR image; and, should one of these quality inspections fail, an action is automatically performed in order to improve a quality when generating more of the MR images.
Abstract:
A heating and monitoring system is described having a focused antenna to monitor temperature of internal tissue and or bodily fluids in a non-invasive way. The focused antenna is shielded to form and relatively small and manageable package that can be placed to monitor internal tissue and/or bodily fluids.
Abstract:
Methods and systems for processing test results based on patient-specific data and reference data are provided. An example method includes processing a result of a diagnostic test performed on a patient based on reference data that is based on testing of a group of patients. The method also includes processing the result based on patient-specific data that includes previous test results of the diagnostic test previously performed on the patient, and providing an indication indicative of an abnormal test result based on the result being in a normal range of the reference data and having a variance from the patient-specific data of a threshold amount. In another example, a method includes providing an indication indicative of a normal test result based on the result being outside a normal range of the reference data and being between an upper limit and a lower limit of the patient-specific data.
Abstract:
A method for diagnosing a body malfunction is provided. At least one change in urinary parameter values, being indicative of the body malfunction, is monitored and detected. A volumetric urinary output of kidneys is monitored using a urine flow monitoring apparatus having a low flow metering device. It is determined whether a change exists in at least one of a volume value of the volumetric urinary output, and a trend of the corresponding urinary parameter value during a predetermined period. Signals are received from a plurality of electrodes, representing the urinary parameter values. The body malfunction is detected based on the determination of the change in at least one of the volume value and the trend.