Abstract:
Methods for making active laser fibers include the production of an optical fiber with disturbed (or deviated) cylindrical symmetry on the glass surface of the fiber. The methods include a preform containing a central core made of glass. In one embodiment, the preform is circular and surrounded by additional glass rods and an outer glass jacket tube. In a first alternative embodiment, this preform is merged during fiber drawing. In a second alternative embodiment, the preform merged in a process forming a compact glass body with disturbed cylindrical symmetry. This compact preform is drawn into a fiber under conditions maintaining the disturbed cylindrical symmetry.
Abstract:
An amplifying optical fiber includes a core containing oxides of elements selected from the group consisting of silicon, germanium, phosphorus, bismuth, aluminum, gallium with a concentration of bismuth oxide of 10-4-5 mol %, a total concentration of silicon and germanium oxides of 70-99.8999 mol %, a total concentration of aluminum and gallium oxides of 0.1-20 mol % wherein both aluminum and gallium oxide are present and a ratio of aluminum oxide to gallium oxide is at least two, and a concentration of phosphorus oxide from 0 to 10 mol %, and provides a maximum optical gain at least 10 times greater than the nonresonant loss factor in the optical fiber. An outside oxide glass cladding comprises fused silica. The core has an absorption band in the 1000 nm region, pumping to which region provides an increased efficiency of power conversion of pump light into luminescence light in the 1000-1700 nm range.
Abstract:
According to one example of the invention an optical fiber comprises: (i) silica based, rare earth doped core having a first index of refraction n1; (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of max wt % to min wt % of Al2O3 concentration is less than 2:1.
Abstract translation:根据本发明的一个示例,光纤包括:(i)具有第一折射率n1的二氧化硅基稀土掺杂的核; (ii)至少一个围绕所述芯并且具有第二折射率n2的基于二氧化硅的包层,使得n1> n2; 其中所述芯或包层中的至少一个掺杂有Al 2 O 3,使得最大wt%与Al 2 O 3浓度的最小重量%的比率小于2:1。
Abstract:
Adverse hydrogen aging limitations in multiply-doped optical fibers are overcome by passivating these optical fibers using a deuterium passivation process. This treatment essentially pre-reacts the glass with deuterium so that the most active glass sites are no longer available to react with hydrogen in service. Optical fibers of main interest are doped with mixtures of germanium and phosphorus. Optimum passivating process conditions are described.
Abstract:
The present invention relates to an optical fiber preform fabricating method that makes it possible to implement a reduction in iron impurities at a low cost. The optical fiber preform fabricating method comprises a glass synthesis step for forming a glass region constituting at least a part of the core area of the optical fiber. The glass synthesis step includes a deposition step of depositing glass particles containing the Al-element inside the glass pipe by means of chemical vapor deposition, and a consolidation step of obtaining a transparent glass body from the glass soot body thus obtained. In other words, the deposition step synthesizes glass particles on the inside wall of a glass pipe by feeding raw material gas, in which the content ratio (O/Al) of the O-element and Al-element is 20 or less, into the glass pipe. Furthermore, the consolidation step obtains a transparent glass body from the glass soot body by heating the glass soot body. The transparent glass body that is formed in the consolidation step constitutes part of the core region.
Abstract:
A method of fabricating a glass body that includes a multiplicity of constituents, at least one of which is a dopant (e.g., a rare-earth element) having a low vapor pressure (LVP) precursor includes the steps of: (a) generating an aerosol from the LVP precursor; (b) separately generating vapors of the other constituents; (c) convecting the aerosol and vapors to deposition system including a substrate; and (d) forming at least one doped layer on a surface of the substrate. In one embodiment, the method also includes filtering the aerosol so as to remove aerosol particles outside of a particular range of sizes. Also described is a unique aerosol generator that is particularly useful in generating aerosols of rare-earth dopants. Particular embodiments directed to the fabrication of Yb-doped optical fibers are described.
Abstract:
The invention relates to an optical fiber, in particular a laser fiber, containing a doped glass fiber core (1) and cladding (2) around the latter with a refraction index profile which decreases outwards from the fiber core. The optical fiber is distinguished by at least one intermediate layer (3, 4, 5) being disposed between the glass fiber core and the cladding to reduce the mechanical tension therebetween. In one advantageous embodiment, the intermediate layer is doped in such a way as to ensure a stepped mechanical tension distribution between the glass fiber core and the cladding, and is co-doped in such a way as to reduce the refractive index and counteract the refraction index-increasing effect of the intermediate layer doping. The invention further relates to an application of at least one doped barrier layer to a core region during preparation of the preform to avoid diffusion of special core dopants from the core during the collapse process, and to allow the diffusion of special dopants between the barrier layer and the core layer.
Abstract:
A method for manufacturing a primary preform for optical fibres using an internal vapour deposition process, including the steps of: i) providing a hollow glass substrate tube having a supply side and a discharge side, ii) surrounding at least part of the hollow glass substrate tube by a furnace, iii) supplying a gas flow, doped or undoped, of glass-forming gases to the interior of the hollow glass substrate tube via the supply side thereof, iv) creating a reaction zone in which conditions such that deposition of glass will take place on the interior of the hollow glass tube are created, and v) moving the reaction zone back and forth in longitudinal direction over the hollow glass substrate tube between a reversal point located near the supply side and a reversal point located near the discharge side of the hollow glass substrate tube.
Abstract:
A method is provided for forming an optical fiber amplifier. The method comprises providing a composite preform having a gain material core that includes one or more acoustic velocity varying dopants to provide a longitudinally varying acoustic velocity profile along the gain material core to suppress Stimulated Brillouin Scattering (SBS) effects by raising the SBS threshold and drawing the composite preform to form the optical fiber amplifier.
Abstract:
The present invention relates to an optical fiber preform fabricating method that makes it possible to implement a reduction in iron impurities at a low cost. The optical fiber preform fabricating method comprises a glass synthesis step for forming a glass region constituting at least a part of the core area of the optical fiber. The glass synthesis step includes a deposition step of depositing glass particles containing the Al-element inside the glass pipe by means of chemical vapor deposition, and a consolidation step of obtaining a transparent glass body from the glass soot body thus obtained. In other words, the deposition step synthesizes glass particles on the inside wall of a glass pipe by feeding raw material gas, in which the content ratio (O/Al) of the O-element and Al-element is 20 or less, into the glass pipe. Furthermore, the consolidation step obtains a transparent glass body from the glass soot body by heating the glass soot body. The transparent glass body that is formed in the consolidation step constitutes part of the core region.