Abstract:
A vehicular opening/closing body control device includes: a braking control unit configured to apply a braking force to an opening/closing body provided in an opening in a vehicle; a traveling state determination unit configured to determine a traveling state of the vehicle; an abnormality detection unit configured to detect occurrence of a full-closing abnormality in which the opening/closing body is not held in a fully-closed state during the traveling of the vehicle; and a record holding unit configured to hold a detection record of the full-closing abnormality, wherein the braking control unit executes braking control through detection of the full-closing abnormality of the opening/closing body, and in a case where the detection record of the full-closing abnormality is held after the vehicle stops, executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality before the vehicle travels.
Abstract:
An operator for moving a barrier between closed and open positions mounted on, or close to, the counterbalance for said barrier. The operator is connected to the counterbalance shaft and lifts the barrier by rotating the counterbalance shaft with attached cable drums and thereby takes up cable connected to the bottom of the door. There is an upper cable connected to the top of the door through a cable drum in the operator. A power spring biases the operator cable drum to always take up the upper cable, keeping it wound. The operator cable drum is connected to the motor through a clutch which when engaged allows the operator to pull the door closed. While the door is closing the clutch can be disengaged to allow the operator cable drum to take up and then pay out the upper cable connected to the top of the door as needed.
Abstract:
A scissor drive includes two legs which can be pivoted relative to one another about a pivot axis, each having a longitudinal axis and designed to be connected to an external component, and a motor/gear assembly that drives the relative pivoting movement of the two legs. The first leg includes a housing that is hollow at least in portions, a cavity defined in the hollow housing extending at least in portions along the longitudinal axis of the first leg, and the motor/gear assembly being received in the housing of the first leg at least in portions in the portion of the cavity that extends along the longitudinal axis of the first leg.
Abstract:
A control device is used to move a pick-up truck tailgate. The control device comprises a first gear arrangement connected to a drive cup and a second gear arrangement that is connected to a motor for driving the second gear arrangement. The control device also includes a clutch arrangement positioned between the first and second gear arrangements. When the clutch arrangement is in an engaged position, it couples the first gear arrangement and the second gear arrangement to transmit torque to the first gear arrangement and the drive cup. When the clutch arrangement is in the disengaged position, the first and second gear arrangements are not coupled. Optionally, the control device comprises a brake unit to slow or stop movement of the tailgate. The control device can be positioned within the pick-up truck tailgate.
Abstract:
A driving device for opening and closing an opening/closing body of a vehicle. The driving device comprises a nut member that moves linearly by way of rotation of a rod member and is threadably engaged with the rod member, and an engaging member that can be engaged with an engagement-receiving member provided on the rod member that is moved by way of a link arm linked to actuation of a solenoid such that rotation of the rod member can be stopped. The link arm has a mechanical structure that limits vibrations that change the vibration status of the engaging member. By using this driving device, impact noise during actuation of the driving device can be mitigated, or the pitch of the noise can be altered, so as not to discomfort passengers.
Abstract:
The invention relates to a drive device (20) for entrance and exit devices for public transportation vehicles, comprising a drive unit (22) that is arranged in and drives a rotary column (24) rotating about a rotational axis Z-Z during opening and closing operations, said column opening and closing the entrance and exit device. The drive unit (22) is held on the vehicle via a retaining component (40). The retaining component (40) acts as counter bearing for a torque of the drive unit (22). Between the drive unit (22) and the retaining component (40), a coupling device (72) is arranged, which enables a rotation of the drive unit (22) about the rotational axis Z-Z when a threshold value of the torque acting upon the drive unit is exceeded. Between the coupling device (72) and the retaining component (40), a bearing is provided, which enables a tumbling motion of the rotary column (24) with the coupling device (72) and prevents a rotation about the rotational axis Z-Z.
Abstract:
A method is disclosed for detecting the activation of a coupling in a damper actuator, the coupling engaging a drive motor and an adjustable damper with each other, so that the damper can be adjusted by means of the drive motor, and the engagement between the drive motor and the damper being disengaged if a force or a momentum acting on the damper exceeds a maximum value. The method comprises the following steps: detecting the indication of an adjustment rate, in particular a rotary speed of the drive motor; determining a gradient of the adjustment rate, in particular a rotary speed gradient, by the indication of the adjustment rate; determining the activation of the coupling by determining whether the determined gradient exceeds or falls below a predetermined threshold value of the gradient.
Abstract:
The invention relates to a drive arrangement for an adjusting element of a motor vehicle, a clutch arrangement which is connected into the drive train with a drive connection and a driven connection, the clutch arrangement at any rate forwarding a movement which is introduced on the drive side to the driven connection and having a braking arrangement for braking a movement which is introduced on the output side. The braking arrangement has a braking element which can be adjusted counter to a braking force, in that, between the output connection and the braking element, the clutch arrangement has a freewheel arrangement comprising at least one freewheel pair of clamping body freewheels which operate in opposite directions, in that a movement which is introduced on the output side always brings about the blocking of at least one clamping body freewheel and is correspondingly braked via the braking arrangement.
Abstract:
The invention relates to a motor-driven device for actuating a movable panel (1) of a motor vehicle, including: a drive unit (3); a transmission element (5) which is to be set into motion by the motor unit (3); a braking module (7) for the transmission element (5), characterized in that the braking module (7) is connected to the transmission element (5) by a clutch module (9) positioned between the transmission element (5) and the drive unit (3), and comprising a wound spring (35) in friction contact with a brake shaft (23) connected to the braking module (7), as well as two coupling elements (25, 27) that are mutually engaged with a functional clearance therebetween, the relative change in position of said two coupling elements (25, 27) enabling the ends (37, 38) of said wound spring (35) to be controlled so as to switch the ends between an engaged position and a disengaged position of the braking module (7), wherein the two coupling elements (25, 27) are a drive element and a driven element, respectively.
Abstract:
The invention relates to a clutch assembly (8) for providing selective engagement with a rotatable shaft, in particular for selecting between manual and powered driving of an output drive such as a door, shutter or gate. The clutch assembly (8) comprises a stop (16) arranged to rotate with the shaft (18), a cam (20) arranged to move relative to the shaft (18), and a follower (24) arranged to rotate around the shaft (18) and axially movable along the shaft in and out of engagement with the stop (16). The follower (24) is operatively associated with the cam (20) so that movement of the follower relative to the cam brings the follower into engagement with the stop (16) by axial movement, so causing rotation of the shaft (18).