Abstract:
A method for fabricating a circuit board structure having at least an embedded electronic element is disclosed, which includes the steps of: providing a substrate and embedding at least an electronic element in the substrate with an active surface and a plurality of electrode pads of the electronic element exposed from a surface of the substrate; forming a plurality of conductive bumps on the electrode pads of the electronic element; and covering the surface of the substrate and the active surface of the electronic element with a dielectric layer and a metal layer stacked on the dielectric layer, wherein the conductive bumps penetrate the dielectric layer so as to be in contact with the metal layer, thereby simplifying the fabrication process, reducing the fabrication cost and saving the fabrication time.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated, the copper foil containing at least one selected from the group consisting of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si and Ag at a total of 30 to 500 mass ppm, a tensile strength of the copper foil having of 100 to 180 MPa, a degree of aggregation I200/I0200 of a (100) plane of the copper foil being 30 or more, and an average grain size viewed from a plate surface of the copper foil being 10 to 400 μm.
Abstract:
A method for manufacturing a resin coating on copper foil includes following steps. Firstly, two diamines of 2,2-bis[4-(4-aminophenoxy)phenyl] propane and 4,4′-oxydianiline, and two acid anhydrides of pyromellitic diandydride and oxydiphthalic anhydride are added into a polar aprotic solvent and the solvent is stirred to form a mixed solution. Secondly, the mixed solution is heated to a temperature of about 170° C.-190° C. to allow a cross-linking reaction to be completed between the two diamines and the two acid anhydrides, thereby forming a thermoplastic polyimide adhesive fluid. The thermoplastic polyimide adhesive fluid is coated on a copper foil and cured to form a thermoplastic polyimide adhesive layer on the copper foil, thereby obtaining a resin coated copper foil. This disclosure also relates to resin coated copper foil and a method for manufacturing a multi-layer circuit board.
Abstract:
There is provided a thermosetting polyimide resin composition which enables production of a cured product exhibiting excellent dimensional stability and which exhibits excellent meltability; there are also provided a cured product of such a composition and an interlaminar adhesive film used for a printed wiring board, the interlaminar adhesive film being formed of the composition. In particular, there are provided a thermosetting polyimide resin composition containing a thermosetting polyimide resin (A) having a biphenyl backbone directly linked to a nitrogen atom of a five-membered cyclic imide backbone and a weight-average molecular weight (Mw) of 3,000 to 150,000, a phosphorus compound (B) represented by specific Formula (b1) or (b2), and an epoxy resin (C); a cured product of such a composition; and an interlaminar adhesive film used for a printed wiring board, the interlaminar adhesive film including a layer formed of the composition, the layer being formed on a carrier film.
Abstract:
A multilayer circuit board comprises core layers 101 and 102 made of a core material impregnated with resin, resin layers 111 and 112 interposed between the core layers 101 and 102, a wiring pattern 140 embedded in the resin layers 111 and 112. The core layers 101 and 102 have a thickness of 100 μm or smaller, whereby the entire board can significantly be thinned. Furthermore, the less strong resin layers 111 and 112 are interposed between the hard core layers 101 and 102, whereby the entire board has increased strength.
Abstract:
The invention aims to provide a resin primer which can stick an insulator layer to a conductor foil whereof the surface is not much roughened with sufficient adhesive force, a conductor foil with resin, a laminated sheet and a method of manufacturing same. The resin primer of the invention comprises a resin having film-forming ability and a breaking energy of 0.15 J or more. The conductor foil with resin of the invention comprises a resin layer comprising a conductor foil and the aforesaid resin primer. Further, the laminated sheet of the invention comprises the conductor foil, an insulating layer disposed facing the conductor foil, and a resin layer comprising the aforesaid resin primer disposed between the conductor foil and insulating layer so that it is in contact therewith. This laminated sheet can be manufactured by heating and pressurizing a laminate comprising the aforesaid conductor foil with resin, and a prepreg laminated on this resin layer.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, wherein equation 1:(f3×t3)/(f2×t2)≧1 is satisfied when t2 (mm) is a thickness of the copper foil, f2 (MPa) is a stress of the copper foil under tensile strain of 4%, t3 (mm) is a thickness of the resin layer, f3 (MPa) is a stress of the resin layer under tensile strain of 4%, and equation 2:1≦33f1/(F×T) is satisfied when f1 (N/mm) is 180° peeling strength between the copper foil and the resin layer, F(MPa) is strength of the copper foil composite under tensile strain of 30%, and T (mm) is a thickness of the copper foil composite.
Abstract:
Ultrathin copper clad laminates including a fabric sheet material layer having a first planar surface, a second planar surface and an original thickness of from about 10 to about 30 microns and at least one copper foil sheet that is adhered to a planar surface of the fabric sheet material by a cured resin wherein the base laminate has a thickness of from about 1.0 to about 1.75 mils.
Abstract:
Provided are a flexible metal clad laminate including: (a) a first conductive metal foil in which a first polyimide layer is formed on a surface thereof; and (b) a second conductive metal foil in which a second polyimide layer is formed on a surface thereof, wherein the first polyimide layer and the second polyimide layer are joined together by an epoxy adhesive, and a method of manufacturing the same. The inventive flexible metal clad laminate can maintain the intrinsic properties of polyimide, and thus, can exhibit good heat resistance and flexibility to comparable with a conventional two-layer, double-sided flexible copper clad laminate, and a manufacturing process thereof is simple and easy, thus ensuring enhanced productivity and economical effectiveness.
Abstract:
This invention relates to a resin composite copper foil capable of applying a copper foil with very small unevenness on a copper foil (matte) surface without deteriorating adhesion force to a resin composition of a copper-clad laminate, and more particularly to a resin composite copper foil comprising a copper foil and a polyimide resin layer wherein the polyimide resin layer contains a specific block copolymerized polyimide resin and an inorganic filler.