Abstract:
The present disclosure discloses a multilayer circuit board comprising a plurality of metal layers, a blind via and/or a buried via, the multilayer circuit board is capable of transmitting signal between the different metal layers. The blind via has a pad on a non-opening side of the blind via. An upper or lower layer metal layer on the non-opening side of the blind via adjacent to the blind via has a first hole which is located in a position corresponding to the pad on the non-opening side of the blind via in a depth direction of the blind via; and/or an upper and/or lower layer adjacent to the buried via has a second hole which is located in a position corresponding to the pad of an upper and/or lower orifice of the buried via in a depth direction of the buried via.
Abstract:
Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
Abstract:
A light emitting diode (“LED”) module with improved thermal characteristics is provided. The module includes an LED, a first circuit board, a second circuit board, a lower insulator, an upper insulator, a lower contact, upper contacts, and a heat sink. Preferably, the heat sink comprises an outer housing and a contact ring. The LED and the heat sink are attached to the first circuit board via solder. In addition to serving as a substrate for the LED, the first circuit board (which contains a plurality of thermally conductive layers connected by vias) facilitates the transfer of heat away from the LED to the heat sink. The module also has improved mechanical and electrical properties, including redundant electrical connections, stable mechanical connections, and a shock-absorbing lower contact. The lower insulator can also be configured to prevent misalignment of the power source with the lower contact when the module is used in a flashlight or other lighting device.
Abstract:
High-speed pluggable rigid-end flex circuit. A circuit includes a flexible section, rigid section, connector disposed on the rigid section, and electrically conductive signal transmission line electrically coupled to the connector. The flexible section includes a first portion of a flexible insulating layer. The rigid section includes a second portion of the flexible insulating layer and a rigid insulating layer disposed on the second portion of the flexible insulating layer. The connector is configured to form a pluggable conductive connection. The electrically conductive signal transmission line includes a first signal trace having a root mean square surface roughness below 20 micrometers and a filled signal via configured to pass through at least a portion of the rigid insulating layer. The flexible and rigid insulating layers have a dissipation factor equal to or below a ratio of 0.004 and a dielectric constant equal to or below a ratio of 3.7.
Abstract:
A package substrate includes an inner interlayer, a first conductor layer, a second conductor layer, an outermost interlayer, an outermost conductor layer including first and second pads to mount electronic components, vias including first and second vias such that the first vias are connecting the first conductor layer and first pads and the second vias are connecting the first conductor layer and second pads, and skip vias penetrating through the outermost and inner interlayers such that the skip vias are connecting the outermost and second conductor layers. Sum of insulation distances (t1, t2) is in range of 40 μm or less to 10 μm or more, where the insulation distance (t1) is insulation distance between the outermost and first conductor layers and the insulation distance (t2) is insulation distance between the first and second conductor layers, and difference between the insulation distances (t1, t2) is less than 5 μm.
Abstract:
A process for fabricating a circuit substrate is provided. The process includes the following steps. A carrier is provided. A conductive layer and a dielectric layer are placed on the carrier, and the conductive layer is located between the carrier and the dielectric layer. The dielectric layer is patterned to form a patterned-dielectric layer having first openings partially exposing the conductive layer. Arc-shaped grooves are formed on the exposed part of the conductive layer. A first-patterned-photoresist layer having second openings respectively connecting the first openings is formed. Conductive structures are formed, wherein each of the conductive structures is integrally formed and includes a pad part, a connection part, and a protruding part; the second openings, the first openings and the arc-shaped grooves are respectively filled with the pad parts, the connection parts and the protruding parts. The first patterned photoresist layer, the carrier and the conductive layer are removed.
Abstract:
A line card of a set of line cards is configured to be coupled to a set of switch-fabric cards to collectively define at least a portion of an orthogonal cross fabric without a midplane board. The line card has an edge portion, a first side and a second side, opposite the first side. The line card includes a set of first set of connectors and a second set of connectors. The first set of connectors is disposed along the edge portion on the first side of the line card and the second set of connectors is disposed along the edge portion on the second side of the line card.
Abstract:
A printed circuit board (PCB) design system and method allows for PCB layouts that can be manufactured using a PCB manufacturing technology selected from multiple PCB manufacturing technologies with minimal or no modification to the PCB layout. In accordance with the exemplary embodiment, the PCB layout is designed to meet all design rules of a High Density Interconnect (HDI) manufacturing technology while minimizing requirements for layout changes when the PCB is manufactured using an Interstitial Via Hole (IVH) manufacturing technology. An IVH PCB includes a plurality of vias positioned within reserved via areas that form connections between at least some conductive elements on the board layers. The conductive elements and the plurality of vias form a layout such that a majority of reserved via areas, of all of the reserved via areas on the printed circuit board, are adequate to accommodate mechanically drilled vias manufactured with the HDI manufacturing technology.
Abstract:
A package substrate includes an outermost interlayer resin insulation layer, an outermost conductive layer formed on a first surface of the outermost interlayer resin insulation layer and including first pads positioned to mount a first electronic component and second pads positioned to mount a second electronic component, a first conductive layer including first conductive circuits and formed on a second surface of the outermost interlayer resin insulation layer on the opposite side with respect to the first surface, first via conductors penetrating through the outermost interlayer resin insulation layer such that the first via conductors are connecting the first conductive layer and the first pads, and second via conductors penetrating through the outermost interlayer resin insulation layer such that the second via conductors are connecting the first conductive layer and the second pads. The first conductive circuits in the first conductive layer are connecting the first and second pads, respectively.
Abstract:
An electromagnetic bandgap structure including: at least three conductive plates; a first stitching via, configured to electrically connect any one of the conductive plates to another conductive plate; and a second stitching via, configured to electrically connect the one conductive plate to yet another conductive plate, wherein the first stitching via electrically connects the one conductive plate to another conductive plate by allowing a part of the first stitching via to be connected through a planar surface above or below the one conductive plate, and the second stitching via electrically connects the one conductive plate to yet another conductive plate by allowing a part of the second stitching via to be connected through a planar surface that is different from the planar surface through which the part of the first stitching via is connected, the two planar surfaces being placed in a same direction based on the conductive plates.