Abstract:
A rotorcraft having a body and a propulsion system wherein the propulsion system includes a main thrust rotor and multiple control rotors, wherein the main thrust rotor is coupled to the body, whereby the main thrust rotor is driven by a main thrust drive shaft having an axis of rotation maintained in a fixed orientation to the body of the rotorcraft and wherein the multiple control rotors are arranged to control roll, pitch and yaw of the rotorcraft and are driven by respective control drive shafts offset to the axis of rotation of the main thrust drive shaft.
Abstract:
A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base. A method of configuring an aircraft having a set of rotors on a mission to carry a payload comprises the steps of determining properties of the payload including at least mass properties, determining the manner in which the payload will be coupled to the aircraft, determining configuration for each of the rotors in the set of rotors at least partially in consideration of the properties of the payload, and positioning the set of rotors in the configuration for the aircraft to perform the mission.
Abstract:
Noises that are to be emitted by an aerial vehicle during operations may be predicted using one or more machine learning systems, algorithms or techniques. Anti-noises having equal or similar intensities and equal but out-of-phase frequencies may be identified and generated based on the predicted noises, thereby reducing or eliminating the net effect of the noises. The machine learning systems, algorithms or techniques used to predict such noises may be trained using emitted sound pressure levels observed during prior operations of aerial vehicles, as well as environmental conditions, operational characteristics of the aerial vehicles or locations of the aerial vehicles during such prior operations. Anti-noises may be identified and generated based on an overall sound profile of the aerial vehicle, or on individual sounds emitted by the aerial vehicle by discrete sources.
Abstract:
Disclosed is a Personal Electric Helicopter device with an integral wind turbine recharging capability. The device is a relatively small, lighter weight powered aircraft capable of vertical take-offs and propulsion across various terrain at low altitudes. The device is uniquely capable of re-charging its power source by connection to an electrical grid or by using its uplift components as a wind turbine for re-charging. The preferred embodiment is comprised of a rechargeable uplift and propulsion power system with components and features; a frame structure to carry an operator and/or payload; a means to connect the structure to the power system; and a means to control the uplift and propulsion system wherein the vehicle may be used to elevate and propel a payload at low altitudes across various terrains and may be positioned to reverse power the wind turbine to recharge the batteries.
Abstract:
An unmanned aerial vehicle delivery system utilizes an unmanned aerial vehicle (UAV) to deliver packages between an initiation point and multiple delivery points at a raised elevation. The UAV flies between points in an organized manner, using logistical, maintenance and safety software, commands from a delivery organization, and guidance tools to coordinate deliveries. One advantage of the system is that the UAV engages the delivery points at a raised elevation, rather than the ground level. The UAV docks through an elevated structure at the delivery point for delivering the package and replenishing a power source. The package is conveyed from a docking end and through a central shaft of the elevated structure by means of an elevator. The package then travels to a lower structure, such as a house or office, for pickup. After completion of the delivery, the UAV replenishes its power source and/or continues on the delivery route.
Abstract:
An aerial vehicle includes a body including a bottom portion, a plurality of rotors coupled to the body for driving the aerial vehicle to fly, and a landing gear coupled to the bottom portion of the body. The landing gear can include a first touchdown bar and a second touchdown bar. The first touchdown bar has a distal end for contacting a horizontal plane. The second touchdown bar has a distal end for contacting the horizontal plane. The distal end of the first touchdown bar and the distal end of the second touchdown bar cooperatively define a plane. When the aerial vehicle is in flight, the plane is at an angle relative to the horizontal plane. When the aerial vehicle is landing at the horizontal plane, the plane is parallel to the horizontal plane, the body is angled relative to the horizontal plane.
Abstract:
An aerial vehicle includes a body including a bottom portion, a plurality of rotors coupled to the body for driving the aerial vehicle to fly, and a landing gear coupled to the bottom portion of the body. The landing gear can include a first touchdown bar and a second touchdown bar. The first touchdown bar has a bottom face for contacting a horizontal plane. The second touchdown bar has a bottom face for contacting the horizontal plane. The bottom face of the first touchdown bar and the bottom face of the second touchdown bar cooperatively define a plane. When the aerial vehicle is in flight, the plane is at an angle relative to the horizontal plane. When the aerial vehicle is landing at the horizontal plane, the plane is parallel to the horizontal plane, the body is angled relative to the horizontal plane.
Abstract:
A multi-link type working apparatus moved by a thrust generating device is provided. The multi-link type working apparatus performs a work by moving a link apparatus, in which a plurality of links are connected by at least one joint, by using the thrust generating device. The multi-link type working apparatus moved by a thrust generating device may variously expand lengths of links, the number of links, and the freedom of movement by using the thrust generating device as an actuator for moving the links, compared to a general multi-link type working apparatus that uses a motor or a hydraulic cylinder as an actuator.
Abstract:
A plurality of UAVs may be operated in a fleet, each of the UAVs in the fleet being configured to work collectively to achieve one or more functions, such as to create a display or implement an antenna array. The fleet of UAVs may operate individually and/or may be coupled to one another to operate as a collective unit. In some embodiments, one or more UAVs in the fleet may operate individually, while two or more UAVs in the fleet may be connected to one another. In such embodiments, the individual UAVs and the connected UAVs may together comprise the fleet.
Abstract:
A mobile telepresence system may include a frame, a propulsion system operably coupled to the frame to propel the frame through a designated space, a screen movably coupled to the frame, and an image output device coupled to the frame. The frame may include a central body defining a longitudinal axis of the frame, a first arm at a first end portion of the central body, and a second arm at a second end portion of the central body, opposite the first end portion of the central body. The propulsion system may include rotors at opposite end portions of the first and second arms which propel the frame in response to an external command. The image output device may project an image onto the screen in response to an external command.