Abstract:
A device has a microelectromechanical system (MEMS) component with at least one surface and a coating disposed on at least a portion of the surface. The coating has a compound of the formula M(CnF2n+1Or), wherein M is a polar head group and wherein n≧2r. The value of n may range from 2 to about 20, and the value of r may range from 1 to about 10. The value of n plus r may range from 3 to about 30, and a ratio of n:r may have a value of about 2:1 to about 20:1.
Abstract:
A wireless device that includes an access point (AP) scanner, a transceiver, and a controller coupled to the AP scanner and transceiver. The AP scanner is configured to scan wireless network channels utilized by one or more APs to transmit data packets, probe responses, and beacons. The transceiver is configured to transmit one or more probe requests to the one or more APs and receive one or more probe responses and beacons from the one or more APs. The controller is configured to determine a proximate geographic position of the wireless device based on signal strength of the one or more probe responses and beacons received from the one or more APs. The controller also dynamically adapts a parameter utilized in determining the proximate geographic position of the wireless device.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.
Abstract:
A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. The inventors further performed atomic force microscopy (AFM) and drift tube measurements to characterize the performance characteristics of the instrument.
Abstract:
A mechanism is provided for reducing stiction in a MEMS device by forming a near-uniform silicon carbide layer on silicon surfaces using carbon from TEOS-based silicon oxide sacrificial films used during fabrication. By using the TEOS as a source of carbon to form an antistiction coating, all silicon surfaces can be coated, including those that are difficult to coat using standard self-assembled monolayer (SAM) processes (e.g., locations beneath the proof mass). Controlled processing parameters, such as temperature, length of time for annealing, and the like, provide for a near-uniform silicon carbide coating not provided by previous processes.
Abstract:
A MEMS device and a method to manufacture a MEMS device are disclosed. An embodiment includes forming trenches in a first main surface of a substrate, forming conductive fingers by forming a conductive material in the trenches and forming an opening from a second main surface of the substrate thereby exposing the conductive fingers, the second main surface opposite the first main surface.
Abstract:
According to an embodiment of the present invention, a method of applying a lubricant to a micromechanical device is provided. The method includes: positioning a dispensing portion of a lubricant liquid dispenser over a surface portion of a micromechanical device; and controlling the dispenser such that a single lubricant liquid droplet of a predefined volume is forced out of the dispensing portion and impinges onto the surface portion.
Abstract:
A wafer-level passivation structure of a micro-device, a micro-device including the same, and methods of manufacturing the wafer-level passivation structure and the micro-device may be provided. In particular, the passivation structure may include a spacer that is disposed on a substrate, covers a portion of the first surface, and has an elastic property, and an anti-adhesion layer that is disposed on a surface of the substrate between the spacer. The spacer may form a lattice pattern. The spacer may be formed of a silicon. The anti-adhesion layer may be a metallic film, an oxide film, or a nitride film.
Abstract:
An electret condenser includes a fixed film 110 including a conductive film 118 to be an upper electrode, a vibrating film 112 including a lower electrode 104 and a silicon oxide film 105 to be an electret film, and a silicon oxide film 108 provided between the fixed film 110 and the vibrating film 112 and including an air gap 109. Respective parts of the fixed film 110 and the vibrating film 112 exposed in the air gap 109 are formed of silicon nitride films 106 and 114.
Abstract:
A releasing and post-releasing method for making a micromirror device and a micromirror array device are disclosed herein. The releasing method removes the sacrificial materials in the micromirror and micromirror array so as to enabling movements of the movable elements in the micromirror and micromirror array device. The post-releasing method is applied to improve the performance and quality of the released micromirrors and micromirror array devices.