Abstract:
Sol-gel monoliths containing SiO.sub.2 and optionally B.sub.2 O.sub.3, Na.sub.2 O, Li.sub.2 O, TiO.sub.2, Al.sub.2 O.sub.3 and mixtures thereof, and a transition metal having an atomic number from 21-28 made by mixing water, a SiO.sub.2 precursor, a non-precipitating salt of a transition metal and mellitic acid to form a sol, gelling the sol, aging the gelled sol, drying the aged gelled sol and densifying by heating to from about 500.degree. C. to about 1350.degree. C.
Abstract translation:包含SiO 2和任选的B 2 O 3,Na 2 O,Li 2 O,TiO 2,Al 2 O 3及其混合物的溶胶 - 凝胶整料和通过混合水制备的具有21-28原子序数的过渡金属,SiO 2前体,过渡金属的非沉淀盐 金属和苯六甲酸形成溶胶,胶凝溶胶,老化凝胶溶胶,干燥老化胶凝溶胶,通过加热致密化至约500℃至约1350℃。
Abstract:
A low loss fiber optic coupler is fabricated by forming a coupler preform having a plurality of spaced glass cores extending longitudinally through a matrix of glass having a refractive index lower than that of the cores. The coupler preform is formed by inserting a plurality of coated optical fiber preform rods into an aperture extending axially through an elongated boule of relatively etchable matrix glass. The cladding portion of the rods, which is relatively etch-resistant, is coated with a layer of etchable glass. The coupler preform is heated and stretched to form a glass rod which is then severed into a plurality of units. Heat is applied to the central region of each unit, and the central region is elongated and tapered inwardly. When an end of the unit is immersed in acid, the matrix glass dissolves, thereby leaving the unit cores and surrounding etch-resistant cladding glass protruding from the newly formed endface of the unit.
Abstract:
A sol-gel method of preparing doped glass articles is provided. The glass is formed by preparing a sol solution containing hydrolyzed silicon alkoxide and ultrafine particle silica. The sol solution can also include a dopant. The sol solution is gelled in a container, dried and sintered to yield the doped silica glass articles.
Abstract:
A method of making a glass optical fiber having a core surrounded by cladding containing diametrically opposed regions of different TCE than the cladding. Three manufacturing techniques are disclosed. (1) A first glass rod having core and cladding glass is placed centrally in a glass tube. Rods of glass having a TCE different from that of the cladding glass are put on opposite sides of the first rod. Rods of cladding glass are placed in the interstices. (2) A soot preform is deposited on a rotating mandrel. In one embodiment, mandrel rotation is halted to deposit one longitudinally extending region and then rotated 180.degree. to deposit the other such region. In a modified embodiment the mandrel continuously rotates and the deposition burner is continuously supplied with reactant gas for forming a base glass and is also provided with pulses of a reactant gas for modifying the base glass to form the diametrically opposed regions. (3) A CVD process is modified by inserting a pair of tubes into the substrate tube when the longitudinally extending regions are to be deposited. There is passed between the first tube and the pair of tubes a gas which reacts to form particles of a base glass and there is passed through the pair of tubes another gas which reacts to form dopant glass particles which combine with base glass particles to form longitudinal strips of doped base glass within the tube.
Abstract:
This invention is directed to the production of fused silica-containing glass articles of large cross section or diameter wherein at least a surface layer thereof exhibits very high optical quality. The method involves depositing via flame hydrolysis/oxidation reaction a layer of fused silica-containing soot onto a supporting bait, essentially immediately thereafter applying a source of heat concentrated uniformly across the breadth of the soot deposit, but focused only over a relatively small area thereof, to raise the temperature within that area sufficiently to uniformly consolidate the soot in that area into a non-porous glass, and then cooling the glass to room temperature.
Abstract:
A single mode optical waveguide is fabricated in a manner such that the core thereof is subjected to a stress-induced birefringence. A hollow intermediate product is formed by depositing layers of cladding and core glass on the inner surface of a substrate tube. Opposite sides of the intermediate product are heated to cause it to collapse into a solid preform foreproduct having an oblong cross-section. A layer of flame hydrolysis-produced soot having a circular outer surface is deposited on the preform foreproduct and is consolidated to form a dense glass cladding layer thereon. The TCE of the outer cladding layer is different from that of the preform foreproduct on which it is deposited so that when the resultant preform is drawn into a fiber, a stress-induced birefringence exists in the core.
Abstract:
A process for preparing a preform for the production of optical fiber by depositing and sintering glass particles upon a glass rod is disclosed. The process comprises directing a stream of glass particles onto the surface of a glass rod which is slowly rotated and moved in a translational direction so as to obtain even deposition of the particulate matter. A separate heat source is supplied beyond the point of deposition of the particles and continuously sinters the deposited particulate as the rod undergoes repeated translation.
Abstract:
An improved method of preparing optical fiber preforms and optical fibers by so called rod-in-tube method, wherein before collapsing a tube to heat-adhere to a rod, a specific glass surface treating agent and oxygen gas are flowed through the clearance between the rod and the tube maintained at a high temperature, whereby an optical fiber preform free from imperfections at the interface between the rod and the tube can be produced so as to give optical fibers of low-loss. As the above glass surface treating agent, those materials are employed which satisfy the following criteria: (i) the hydrogen content thereof being not more than about 1% by weight, and (ii) the substances, produced therefrom in the presence of oxygen gas at a high temperature, having a boiling point or sublimation point of not more than the temperature required for collapsing the tube.
Abstract:
A method of forming a preform or blank for a high bandwidth gradient index optical filament, the preform itself and the resulting optical filament is disclosed. The preform which ultimately forms the optical filament includes a barrier layer between a tubular starting member which comprises the cladding and the core, the index of refraction of the barrier layer being equal to or less than the index of refraction of the tubular starting member; there being no step increase in the index of refraction of the barrier layer at the barrier layer-cladding interface nor of the core at the core-barrier layer interface of the optical filament. The barrier layer is formed from a base glass, a first dopant B.sub.2 O.sub.3, and at least one other dopant which is maintained substantially constant in the barrier layer and then gradually varied during the formation of the core. The quantity of B.sub.2 O.sub.3 is also maintained substantially constant in the barrier layer but then gradually decreased during the formation of the core.
Abstract translation:公开了一种形成用于高带宽梯度折射率光纤的预成型件或坯料的方法,预成型件本身和所得到的光纤。 最终形成光纤的预成型件包括在包括包层和芯之间的管状起始构件之间的阻挡层,阻挡层的折射率等于或小于管状起始构件的折射率; 阻挡层 - 包层界面处的阻挡层的折射率和光纤的芯阻挡层界面处的芯的折射率没有增加。 阻挡层由基底玻璃,第一掺杂剂B 2 O 3和至少一种其它掺杂剂形成,其在阻挡层中保持基本上恒定,然后在芯的形成期间逐渐变化。 在阻挡层中B 2 O 3的量也保持基本恒定,但在芯的形成期间逐渐降低。
Abstract:
A method of forming graded index, nitrogen-doped optical waveguides. A cylindrically-shaped porous preform comprising at least two oxides is initially formed. One of the oxides, which more readily reacts with nitrogen, has a greater concentration near the center of the preform than at the outer portion thereof. The preform is treated with a nitrogen-containing compound to form a porous body having a greater concentration of nitrogen in the central portion thereof. The porous preform is consolidated and drawn into an optical waveguide filament.