Abstract:
An ophthalmic surgical system can include a light source configured to generate a light beam and a filter wheel disposed between the light source and an intraocular illumination device. The filter wheel can include an unfiltered area, a first filtered area, and a second filtered area. The first and second filtered areas can limit transmission of certain wavelengths of the light beam to the intraocular illumination device. The system can include an actuator configured to selectively move the filter wheel to cause the light beam to pass through the unfiltered area, the first filtered area, and/or the second filtered area. The system can include a computing device configured to provide a control signal to the actuator. The computing device can be configured to provide a control signal to the actuator based on a beam location, a beam composition, an exposure time, and/or a limited visibility condition.
Abstract:
A multimode fundus camera enables three-dimensional and/or spectral/polarization imaging of the interior of the eye to assist in improved diagnosis. In one aspect, the multimode fundus camera includes a first imaging subsystem, a filter module, and a second imaging subsystem. The first imaging subsystem is positionable in front of an eye to form an optical image of an interior of the eye. The filter module is positioned at a pupil plane of the first imaging subsystem or at a conjugate thereof. The second imaging subsystem include a microimaging array and a sensor array. The microimaging array is positioned at the image plane or a conjugate thereof, and the sensor array is positioned at the pupil plane or a conjugate thereof.
Abstract:
A sensor device including one or more sensor elements and one or more optical filters is provided. The one or more optical filters each include a plurality of dielectric layers and a plurality of metal layers stacked in alternation. The metal layers are intrinsically protected by the dielectric layers. In particular, the metal layers have tapered edges that are protectively covered by one or more of the dielectric layers.
Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. Lens stack arrays in accordance with many embodiments of the invention include lens elements formed on substrates separated by spacers, where the lens elements, substrates and spacers are configured to form a plurality of optical channels, at least one aperture located within each optical channel, at least one spectral filter located within each optical channel, where each spectral filter is configured to pass a specific spectral band of light, and light blocking materials located within the lens stack array to optically isolate the optical channels.
Abstract:
A display substrate, a display panel and a display device are disclosed. The display substrate includes: a base substrate (1), and a color film structure (2) and a transparent conductive oxide film layer (3) subsequently laminated on the base substrate (1). The color film structure (2) includes a plurality of color filter units arranged in a matrix and having different colors; at least one color of the color filter units in the color film structure (2) includes at least two layers of laminated color filter films, refractive indices of the color filter films gradually increase in a direction from the base substrate (1) towards the transparent conductive oxide film layer (3), and one layer of the color filter films adjacent to the base substrate (1) has refractive index larger than that of the base substrate (1), one layer of the color filter films adjacent to the transparent conductive oxide film layer (3) has refractive index less than that of the transparent conductive oxide film layer (3). The display substrate reduces the loss of light transmitted in the display panel, and thus the display brightness of the display device is increased.
Abstract:
The invention is directed to a colored composition containing a coloring agent and a resin, wherein a content of the coloring agent to a total solid content of the colored composition is 50% by weight or more and a solid content acid value of the resin is more than 80 mg KOH/g, and a method of producing a color filter including forming a first colored layer containing a first colored composition and patterning with dry etching so as to from a through-hole group in the first colored layer, wherein the first colored composition is the colored composition as defined herein.
Abstract:
Provided are a colored composition which can maintain good light fastness even when placed under an environment having a low oxygen concentration for a long period of time, a cured film, a color filter, a method for producing a color filter, a solid-state image sensor, and an image display device.The colored composition includes a dye multimer (A) and a solvent (B), in which the dye multimer (A) has a partial structure derived from a xanthene dye having a cationic moiety, and also has an anionic moiety, and the content of water in the colored composition is 0.01% by mass to 3.0% by mass.
Abstract:
The present invention provides a liquid crystal display device which prevents a decrease in the voltage holding ratio (VHR) of a liquid crystal layer and an increase in ion density (ID) therein and which overcomes problems of defective display such as dropouts, uneven alignment, and screen burn-in. The liquid crystal display device of the present invention prevents a decrease in the voltage holding ratio (VHR) of a liquid crystal layer and an increase in ion density (ID) therein and reduces defective display such as screen burn-in; hence, such a liquid crystal display device is properly used as liquid crystal display devices of a VA mode and PSVA mode which involve active matrix driving and can be applied to liquid crystal display devices of liquid crystal TV sets, monitors, mobile phones, and smartphones.
Abstract:
A translucent liquid crystal display panel (2) includes pixel pairs as display units each formed by a left-eye pixel (4L) and a right-eye pixel (4R) and arranged in a matrix shape. A through hole (4Ld) arranged in a color layer (4Lc) of a color filter has a slit shape whose longitudinal direction is identical to the orientation direction of a cylindrical lens (3a) constituting a lenticular lens (3). Similarly, a through hole (4Rd) arranged in a color layer (4Rc) of a color filter has a slit shape whose longitudinal direction is identical to the orientation direction of the cylindrical lens (3a) constituting the lenticular lens (3). This suppresses the phenomenon that a hue is changed by a field-of-view angle and/or an external light condition on the translucent display panel capable of displaying an image directed to a plurality of viewpoints.
Abstract:
A frame sealant and a method of preparing the same as well as a display device containing the frame sealant. The frame sealant includes an epoxy-acrylic resin, an acrylic resin, a thermal curing agent, a coupling agent, a photoinitiator, and an organic filler, and further an one-dimensional nano-material as an inorganic filler which is capable of cross-linking with the epoxy-acrylic resin. The one-dimensional nano-material after cross-linking with the epoxy-acrylic resin will form an interlaced network, which can prevent granular materials from precipitating and improve the display quality.