Abstract:
An apparatus for analysis of a sample and in particular of a biological sample. The apparatus contains a microfluidic chip with dies, adapted to be selectively activated or deactivated by presence of target molecules in the biological sample. The apparatus further contains a light source to emit light for illumination of the microfluidic chip and an optical filter to allow passage of the light from the dies once activated or deactivated by the presence of the target molecules. A method for pressurizing a microfluidic chip is also disclosed, where a chamber is provided, the chamber is connected with the microfluidic chip and pressure is applied to the chamber.
Abstract:
Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
Abstract:
Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
Abstract:
Embodiments of the present invention relate to a surface wave enabled darkfield aperture structure comprising an aperture layer, a aperture in the aperture layer and a plurality of grooves around the aperture. The aperture layer has a first and second surface. The plurality of grooves is in the first surface. A surface wave propagates along at least the first surface. The plurality of grooves is configured to generate a darkfield at the aperture by modifying the surface wave to cancel out direct transmission of a uniform incident light field received by the aperture.
Abstract:
Apparatus and methods for mechanical cell lysis with single cell resolution which requires very low applied pressure. The device can be handheld, simple to operate, requires no external power except for hand-applied pressure via a syringe, and is applicable to all cell types including yeast and bacterial cells. The device is also capable of mechanically lysing a single cell. A single cell is selected from a biological sample of interest. The single cell is lysed by application of mechanical stress in a single cell lysing apparatus having a trap structure for deterministically capturing the cell and a stress raiser that cooperates with a source of mechanical stress so as to apply sufficient force to rupture a cell. The stress raiser can be a properly designed edge of the trap or it can be a lithographically produced structure such as a nanoblade or a nanopillar.
Abstract:
Various embodiments described herein comprise a gemstone or other piece of jewelry, which incorporates one or more diffractive optical elements to enhance the fire displayed by the gemstone. In certain embodiments, the diffractive optical element comprises a diffraction grating etched on one or more facets of the gemstone.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
The invention relates to a method for producing electronic components comprising adjacent electrodes interspaced at distances ranging between 10 nanometers and several micrometers on a substrate of any type. According to the invention, the electrodes are structured by means of overlapping edges on the deposited layer or by undercutting the deposited layers. The electronic components are then produced either in the conventional manner or using a lithographic process from the underside of the transparent substrate and finally by means of a succession of known method steps for the production of electronic components.
Abstract:
Embodiments of the present invention relate to a surface wave enabled darkfield aperture structure comprising an aperture layer, a aperture in the aperture layer and a plurality of grooves around the aperture. The aperture layer has a first and second surface. The plurality of grooves is in the first surface. A surface wave propagates along at least the first surface. The plurality of grooves is configured to generate a darkfield at the aperture by modifying the surface wave to cancel out direct transmission of a uniform incident light field received by the aperture.