Abstract:
An integrated circuit may comprise a digital logic circuit, a memory refresh circuit, a first one or more dynamic random access memory (DRAM) cells, and a second one or more DRAM cells. The first DRAM cell(s) may be refreshed by the memory refresh circuit whereas the second DRAM cell(s) is not refreshed by any memory refresh circuit. Each of the first DRAM cell(s) and the second DRAM cell(s) may be a one-transistor cell. The first DRAM cell(s) may be used for storage of data which is overwritten at less than a threshold frequency. The second DRAM cell(s) may be used for storage of data which is overwritten at greater than the threshold frequency. A rate at which the first DRAM cell(s) are refreshed may be adjusted during run-time of the integrated circuit.
Abstract:
A method for targeted advertisement includes storing a profile tag associated with each user in a device maintained by that user. Each profile tag includes the demographic information of its associated user. A multitude of target tags are also transmitted to the users. Each target tag is associated with an advertiser and includes the demographic information of the users. The advertisements and their corresponding target tags are transmitted and cached in the devices maintained by the users. The number of matches between the target tags and the user profiles are supplied to their respective advertisers. The advertisers use the matching number to modify the prices they are willing to offer for the commercial break. The target tags include information that is used to select one of the cached advertisement for playing during the commercial break.
Abstract:
A network device may comprise one or more circuits including a clock signal generator, an ADC, and a processor. The ADC may digitize a received signal across a range of frequencies that encompasses a first band of frequencies used for a first network and a second band of frequencies used for a second network. A sampling frequency of the ADC may be determined by a frequency of a clock signal output by the clock signal generator. The processor may determine whether the first network is active and whether the second network is active. The processor may configure the clock generator such that, when both of the first network and the second network are active, the clock signal is set to a first frequency, and when the first network is active and the second network is inactive, the clock signal is set to a second frequency.
Abstract:
A system comprises a first phased array radar assembly configured to be attached to a vehicle. The first phased array radar assembly includes a first plurality of antennas arranged in an array and attached to a circuit board. The system also includes one or more circuits attached to the circuit board. Each of the one or more circuits includes transmitter circuitry communicatively coupled to a subset of the first plurality of antennas and receiver circuitry communicatively coupled to the subset of the first plurality of antennas.
Abstract:
Methods and systems for ripple suppression in multi-phase buck converters may comprise a buck converter for providing an output voltage with controlled ripple current. The buck converter may include one or more main buck converter stages and one or more suppression buck converter stages coupled with the one or more main buck converter stages. The one or more suppression buck converter stages may provide suppression currents to reduce ripple currents generated in the one or main buck converter stages.
Abstract:
A system comprises a first phased array radar assembly configured to be attached to a vehicle. The first phased array radar assembly includes a first plurality of antennas arranged in an array and attached to a circuit board. The system also includes one or more circuits attached to the circuit board. Each of the one or more circuits includes transmitter circuitry communicatively coupled to a subset of the first plurality of antennas and receiver circuitry communicatively coupled to the subset of the first plurality of antennas.
Abstract:
A radar system comprises a transmitter and a receiver. The radar system is operable to define a near range and a far range. The radar system is operable to, during each one of a plurality of time intervals, repeatedly transmit, via the transmitter, a plurality of OFDM symbols. The transmitter is operable to select a transmit power for the transmission during the one of the time intervals based on from which of the near range and the far range reflections of the OFDM symbols are to be received during the one of the time intervals. The receiver is operable to receive reflections of the OFDM symbols, and process, in the receiver, the reflections of the OFDM symbols to detect objects within the near range and the far range.
Abstract:
A WiFi access point (AP) includes a receive radio frequency (RF) front end and a baseband processor that controls operation of the receive RF front end. The RF front end captures signals over a wide spectrum that includes a plurality of WiFi frequency bands (2.4 GHz and 5 GHz) and channelizes one or more WiFi channels from the captured signals. The baseband processor combines a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels. The receive RF front end may be integrated on a first integrated circuit and the baseband processor may be integrated on a second integrated circuit. The first and second integrated circuits may be integrated on a single package. The RF front end and the baseband processor may be integrated on a single integrated circuit. The WiFi access point comprises a routing module that is communicatively coupled to the baseband processor.
Abstract:
Systems and methods are provided for distortion redirection in phased arrays. In an electronic device configured for transmission and reception of signals and having a two-dimensional phased array, effects of distortion, corresponding to at least one processing function applied during communication of signals, on the communication of signals may be assessed, and based on the effects of distortion, one or more adjustments for mitigating the effects of distortion may be configured and applied during processing of signals. Assessing the effects of distortion may include determining one or more characteristics associated with the communication of the signals, where the one or more characteristics relate and/or are subject to the effects of the distortion, and assessing the effects of distortion based on the one or more characteristics.