Abstract:
An autonomous robot, that is for example, suitable for operations such as vacuuming and surface cleaning includes a payload configured for vacuum cleaning, a drive system including a steering system, a navigation system, and a control system for integrating operations of the aforementioned systems.
Abstract:
Disclosed are an automatic charging apparatus of an autonomous mobile robot and an automatic charging method using the same in that a moving robot can automatically detect infrared signals emitted from a charging station and can automatically induce charging station so as to automatically charge a battery of the robot, whereby improving convenience thereof. The automatic charging apparatus of the autonomous mobile robot, comprises a charging station having connecting terminals for charging the battery and an infrared signal generator for emitting infrared signals on a position information thereof; and a moving robot having an infrared receiving apparatus for receiving the infrared signals from the infrared signal generator in a cast that a remnant capacity of the battery is insufficient or a charging order is inputted, a microcomputer for controlling a traveling of the moving robot by using a detected position information of the charging station through the infrared signals received from the infrared receiving apparatus, and charging terminals for charging the battery with electricity through the contact with the connecting terminal.
Abstract:
A method and apparatus for the detection, treatment or collection of a quantity of solid animal excrement from a surface, particularly a grassy surface. The method includes the steps of autonomously or semi-autonomously detecting the presence of the excrement on the surface, moving a collection/treatment device into position over the detected excrement, and, thereupon, subjecting the detected excrement to one or more of deodorization, disinfection, enhancement of deterioration, dispersal and/or collection of the detected excrement. The apparatus of the present invention operates without the immediate or continued intervention of a human. Preferably, the device us robotic in nature, is readily portable, and preferably includes a rechargeable power source.
Abstract:
A control system for a mobile robot (10) is provided to effectively cover a given area by operating in a plurality of modes, including an obstacle following mode (51) and a random bounce mode (49). In other embodiments, spot coverage, such as spiraling (45), or other modes are also used to increase effectiveness. In addition, a behavior based architecture is used to implement the control system, and various escape behaviors are used to ensure full coverage.
Abstract:
Disclosed is a method, apparatus, and medium for estimating a pose of a moving robot using a particle filter. A method for estimating a pose of a moving robot using a particle filter according to an embodiment of the invention includes a detecting a change in pose of the mobile robot and calculating a pose of the current particle by applying the detected change in pose to the previous particle, predicting the probability of the pose of the current particle and obtaining a weight of the current particle on the basis of range data obtained by a sensor and map information, resampling the current particle on the basis of the weight, and adjusting the weight in consideration of an error of the sensor
Abstract:
A robot cleaner comprises a suction unit installed within a cleaner body, for sucking dirt on a floor; a driving unit for moving the cleaner body; a wheel installed at a bottom of the cleaner body to be contacted with the floor, and rotated by movement of the cleaner body; a detecting unit for detecting whether the wheel is rotated; and a control unit for controlling the driving unit in response to signal from the detecting unit. Accordingly, the robot cleaner can smoothly and continuously carry out a cleaning operation, even when the robot cleaner is abnormally stopped due to an obstacle which is not previously recognized in traveling.
Abstract:
A mobile robot includes a first receiver that receives a header signal transmitted via a first communication method, and a second receiver that receives data signals transmitted via a second communication method different than the first communication method. The header signal indicates that the data signals will be transmitted, and each data signal corresponds to a specific area of communication coverage.
Abstract:
A cleaning robot and a control method thereof in which a cleaning path desired by the user is recognizable by the cleaning robot, thereby being capable of cleaning a cleaning area desired by the user in a pattern desired by the user. The cleaning robot includes a running unit to run the cleaning robot, a storage unit for storing a running path, along which the cleaning robot has learned, and a control unit to recognize the learned running path of the cleaning robot when a path learning operation is required, to store the recognized learned running path in the storage unit, and to drive the running unit. When a cleaning operation of the cleaning robot along the stored learned running path is required, the control unit controls the running unit to cause the cleaning robot to perform the required cleaning operation while running along the stored learned running path. The user can directly input, to the cleaning robot, a cleaning path desired by the user, in order to cause the cleaning robot to perform a cleaning operation while running along the learned running path. Accordingly, it is possible to accurately inform the cleaning robot of various areas associated with the cleaning operation, for example, an area to be repeatedly cleaned at several times, or an area to be prevented from being cleaned.
Abstract:
A method of classifying and collecting feature information of an area according to a robot's moving path, a robot controlled by area features, and a method and apparatus for composing a user interface using the area features are disclosed. The robot includes a plurality of sensor modules to collect feature information of a predetermined area along a moving path of the robot, and an analyzer to analyze the collected feature information of the predetermined area according to a predetermined reference range and to classify the collected feature information into a plurality of groups.
Abstract:
A method for clearing lines on a playing surface is provided. The method includes automatic direction of a cleaning device along the lines to clean the lines. The method also preferably includes calibrating the means of measuring the distances moved by the cleaning device along the surface. Associated software is provided as well.