Highly thermal conductive nanocomposites
    231.
    发明授权
    Highly thermal conductive nanocomposites 有权
    高导热性纳米复合材料

    公开(公告)号:US09067794B1

    公开(公告)日:2015-06-30

    申请号:US12536153

    申请日:2009-08-05

    Abstract: Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

    Abstract translation: 公开了用于形成高导热性纳米复合材料的碳基填料的形成方法。 形成方法包括用醇/水混合物处理膨胀石墨,然后进一步剥离石墨以形成厚度在约2至约10纳米之间的极薄碳纳米片。 公开的碳纳米片可以被官能化和/或可以掺入具有极高热导率的纳米复合材料中。 公开的方法和材料在许多技术应用中可以证明是非常有价值的,包括例如形成用于防护服的热管理材料,并且可用于空间探索或其它需要高效而轻量且灵活的热管理解决方案的方法和材料。

    METHOD FOR ALIGNING HIGH ASPECT RATIO MATERIALS AND COMPOSITIONS THEREFROM
    232.
    发明申请
    METHOD FOR ALIGNING HIGH ASPECT RATIO MATERIALS AND COMPOSITIONS THEREFROM 有权
    用于调整高比例材料的方法及其组合物

    公开(公告)号:US20150147560A1

    公开(公告)日:2015-05-28

    申请号:US14479818

    申请日:2014-09-08

    Abstract: A method for alignment of high aspect ratio materials (HARMs) within a liquid matrix by means of magnetic particles. The application of an external magnetic field creates a forced motion of the magnetic particles. This in turn leads to a laminar flow within the matrix which imposes a drag force on the HARMs, aligning the HARMs across the matrix. The used magnetic particles eventually accumulate at one end side of the matrix container and can be removed either by an incision or an extraction process. Unlike the previously proposed methods, there is no need for the magnetic particles to be attached either physically or chemically to the HARMs. Thus, the ultimate aligned HARMs are mostly pure and free of any magnetic particles. Once the matrix is a polymeric solution, the mentioned method is capable of synthesis of aligned HARMs-polymer composites, which exhibit improved mechanical and electrical properties.

    Abstract translation: 通过磁性颗粒在液体基质内对准高纵横比材料(HARM)的方法。 外部磁场的应用产生磁性颗粒的强制运动。 这又导致矩阵内的层流,其在HARM上施加拖曳力,使HARM跨越矩阵。 所使用的磁性颗粒最终积聚在基质容器的一端,并且可以通过切口或提取过程去除。 与先前提出的方法不同,不需要将磁性颗粒物理地或化学地附着在HARM上。 因此,最终对准的HARMs大多是纯的,没有任何磁性颗粒。 一旦基质是聚合物溶液,所提及的方法能够合成对准的HARMs-聚合物复合材料,其表现出改善的机械和电学性能。

    ROOM TEMPERATURE-CURABLE ELECTRICALLY CONDUCTIVE FLUOROSILICONE RUBBER COMPOSITION
    234.
    发明申请
    ROOM TEMPERATURE-CURABLE ELECTRICALLY CONDUCTIVE FLUOROSILICONE RUBBER COMPOSITION 有权
    室温可熔电导电氟硅橡胶组合物

    公开(公告)号:US20150123044A1

    公开(公告)日:2015-05-07

    申请号:US14403589

    申请日:2013-05-24

    Inventor: Hiroaki Yoshida

    Abstract: A room temperature-curable electrically conductive fluorosilicone rubber composition comprises: (A) a fluoropolysiloxane capped at the molecular terminals with hydroxyl groups having a viscosity at 25° C. of from 1,000 to 1,000,000 mPa·s; (B) fine silica powder having a BET specific surface area of not less than 50 m2/g; (C) a carbon black; (D) a fibrous carbon allotrope having a graphene structure; and (E) a crosslinking agent. Component (D) is comprised in an amount of not less than 1.5 parts by mass per 100 parts by mass of component (A). The room temperature-curable electrically conductive fluorosilicone rubber composition is cured to form a cured product having both superior post-cure physical strength and electrical conductivity. Also, the room temperature-curable electrically conductive fluorosilicone rubber composition has viscosity that enables superior handling, and provides superior post-cure surface smoothness, solvent resistance, and adhesion.

    Abstract translation: 室温固化型导电氟硅橡胶组合物包含:(A)在25℃下的粘度为1,000〜1,000,000mPa·s的羟基的分子末端封端的氟聚硅氧烷; (B)BET比表面积不小于50m 2 / g的二氧化硅细粉; (C)炭黑; (D)具有石墨烯结构的纤维状碳同素异形体; 和(E)交联剂。 组分(D)的含量相对于100质量份组分(A)不小于1.5质量份。 固化室温固化型导电性氟硅酮橡胶组合物以形成具有优异的后固化物理强度和导电性的固化产物。 此外,室温固化性导电氟硅酮橡胶组合物具有能够优异处理的粘度,并且提供优异的后固化表面光滑度,耐溶剂性和粘合性。

    Method for producing nanocomposite materials with polymeric matrix, and corresponding nanocomposite materials
    238.
    发明授权
    Method for producing nanocomposite materials with polymeric matrix, and corresponding nanocomposite materials 有权
    用聚合物基体制备纳米复合材料的方法及相应的纳米复合材料

    公开(公告)号:US08975319B2

    公开(公告)日:2015-03-10

    申请号:US13322322

    申请日:2011-07-11

    Inventor: Daniele Pullini

    Abstract: Described herein is a method for producing a nanocomposite material, including nanofillers dispersed in a polymeric matrix. The method comprises the steps of: a) providing a starting thermoplastic polymeric material, having a crystalline structure; b) providing one or more precursors of the nanofillers; c) bringing the starting thermoplastic polymeric material into the molten state and dispersing the precursor or precursors therein; d) subjecting the precursor or precursors to in situ thermolysis, thereby generating the nanofillers directly within the melted material; and e) causing solidification of the molten polymeric material including the nanofillers, thereby obtaining the nanocomposite material. The precursor or the precursors are selected from among carbonates and acetylacetonates and the thermoplastic polymeric material is isotactic polypropylene.

    Abstract translation: 本文描述了一种生产纳米复合材料的方法,其包括分散在聚合物基质中的纳米填料。 该方法包括以下步骤:a)提供具有晶体结构的起始热塑性聚合材料; b)提供纳米填料的一种或多种前体; c)使起始热塑性聚合物材料进入熔融状态并将前体或前体分散在其中; d)对前体或前体进行原位热解,从而直接在熔融材料内产生纳米填料; 和e)引起包括纳米填料的熔融聚合物材料的固化,从而获得纳米复合材料。 前体或前体选自碳酸酯和乙酰丙酮化物,热塑性聚合物材料是全同立构聚丙烯。

    Optical composition
    240.
    发明授权
    Optical composition 有权
    光学组成

    公开(公告)号:US08936997B2

    公开(公告)日:2015-01-20

    申请号:US13384609

    申请日:2010-08-09

    Abstract: The invention relates to a composition comprising a binder material and nanoparticles having an average particle size of 100 nm or less having a first refractive index of at least 1.65 in respect of light of a first wavelength, and a second refractive index in the range of 1.60-2.2 in respect of light of a second wavelength, wherein said first refractive index is higher than said second refractive index, and wherein the first and second refractive indices may be tuned by adjusting the volume ratio of the nanoparticles to the binder material. The composition may improve light extraction when used for bonding a ceramic member to an LED, and/or may reduce the amount of light that is directed back towards the LED.

    Abstract translation: 本发明涉及一种组合物,其包含相对于第一波长的光具有第一折射率至少为1.65的平均粒径为100nm以下的粘合剂材料和纳米颗粒,第二折射率为1.60 -2.2关于第二波长的光,其中所述第一折射率高于所述第二折射率,并且其中可以通过调节纳米颗粒与粘合剂材料的体积比来调节第一和第二折射率。 当用于将陶瓷构件结合到LED时,组合物可以改善光提取,和/或可以减少被引导回LED的光量。

Patent Agency Ranking