Abstract:
An unmanned aerial vehicle having counterrotating ducted rotors that are driven by electric motors. The vehicle has a low weight and a small profile. The unmanned aerial vehicle is suitable for a number of different tasks, including control, surveillance and reconnaissance, communication, and other tasks without exposing personnel to dangerous situations. The vehicle is particularly suited for entering buildings and other enclosed structures and spaces such as caves. The unmanned aerial vehicle can also be equipped for potential offensive actions.
Abstract:
The invention is an unmanned flying helicopter aircraft platform (“aircraft platform”) that can be powered by either interchangeable electric motors or by fuel powered internal combustion engines. The aircraft platform is surrounded by a lightweight exoskeleton cage that protects the rotor blades from coming into contact with external objects. The aircraft platform uses a weight located on the bottom side of the aircraft platform that can be remotely moved to adjust the center of gravity in order to navigate in any direction. The aircraft platform has a place on its bottom side where attachments can be added or removed which allows the aircraft platform to be used for multiple different purposes. The aircraft platform can be flown and operated either remotely using a hand held control unit or it can be flown and operated by an onboard pilot located in the human carrying attachment.
Abstract:
A system and method are provided for controlling a plurality of aircraft to lift a common payload. The system comprises of multiple aircraft tethered to a common payload, where the group of said aircraft form a swarm that is controlled by a pilot station. Each said aircraft is autonomously stabilized and guided through a swarm avionics unit, which further comprises of sensor, communication, and processing hardware. At the said pilot station, a pilot remotely enters payload destinations, which is processed and communicated to each said aircraft. The method for controlling a multi-aircraft lifting system comprises of first inputting the desired location of the payload, and then determining a series of intermediary payload waypoints. Next, these payload waypoints are used by the swarm waypoint controller to generate individual waypoints for each aircraft; a flight controller for each aircraft moves the aircraft to these individual waypoints.
Abstract:
An apparatus for converting a manned aircraft for unmanned flight, the aircraft including at least one pilot control capable of manipulation to affect operation of the aircraft, the apparatus comprising a first actuator and a second actuator each configured to selectively provide movement or resistance to movement in a first manner including linear or rotational motion, a first clutch and a second clutch each configured to selectively couple movement of the associated actuator to the pilot control, and a vehicle controller capable of being selectively enabled to operate the pilot control actuators and clutches providing unmanned operation of the aircraft or disabled providing manned operation of the aircraft. The first actuator has a first scope describing a first amount of allowable movement, while the second actuator has a second scope larger than the first scope.
Abstract:
Embodiments of the invention allow sensors positioned on or near a remotely controlled device to monitor the status and/or internal conditions of the device and transmit the status information through a data link to a receiver station, or control station, where the information can be provided to a user or operator via sensory stimulation signals. Such sensory stimulation signals can include auditory stimulation signals that can convey the information to the user while allowing the user to maintain visual attention on the remote device. A remote station can obtain information from sensors operably connected to the remote device. The sensor information can be transmitted as digital information from the remote station to a control station, or receiver station, where it is converted to sensory stimulation signals, such as sounds. Such sounds can include tones, alarms, speech, other audible sounds, or combinations thereof. An operator controlling the remote device can, upon receiving the sensory stimulation signals, provide input signals for controlling the remote device.
Abstract:
Controlling an unmanned aerial vehicle (UAV) may be accomplished by using a wireless device (e.g., cell phone) to send a control message to a receiver at the UAV via a wireless telecommunication network (e.g., an existing cellular network configured primarily for mobile telephone communication). In addition, the wireless device may be used to receive communications from a transmitter at the UAV, wherein the wireless device receives the communications from the transmitter via the wireless network. Examples of such communications include surveillance information and UAV monitoring information.
Abstract:
A radio controlled (RC) aircraft includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC aircraft. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC aircraft. A plurality of control devices control the motion of the RC aircraft based on the control data. In an embodiment, a remote control device commands the RC helicopter to substantially a hovering state when no force is applied to each of a plurality of spring-loaded interface devices.
Abstract:
An apparatus for converting a manned aircraft of a type including at least one pilot control capable of manipulation to affect operation of the aircraft for unmanned flight operations includes first and second actuators, each configured to selectively provide movement or resistance to movement in a first manner including linear or rotational motion, first and second clutches, each configured to selectively couple movement of the associated actuator to the pilot control, and a vehicle controller capable of being selectively enabled to operate the pilot control actuators and clutches and thereby provide unmanned operation of the aircraft, or of being disabled, thereby providing for manned operation of the aircraft. The first actuator has a first scope describing a first amount of allowable movement, while the second actuator has a second scope larger than the first scope.
Abstract:
Controlling an unmanned aerial vehicle (UAV) may be accomplished by using a wireless device (e.g., cell phone) to send a control message to a receiver at the UAV via a wireless telecommunication network (e.g., an existing cellular network configured primarily for mobile telephone communication). In addition, the wireless device may be used to receive communications from a transmitter at the UAV, wherein the wireless device receives the communications from the transmitter via the wireless network. Examples of such communications include surveillance information and UAV monitoring information.
Abstract:
An aircraft which is attachable to, for example, a cellular phone. The aircraft is provided with at least four rotors actuated with compressed fluid or by ring-shaped electric motors.