Abstract:
A bellows pump device includes first and second bellows mounted on a pump head so as to be expandable/contractible independently of each other and configured to suck a fluid from a suction passage thereinto by expansion thereof and discharge the fluid therefrom to a discharge passage by contraction thereof. First and second air cylinder portions are configured to respectively cause the first and second bellows to perform expansion/contraction operation. First and second detection devices are configured to detect expanded/contracted states of the first and second bellows, respectively. A control unit is configured to control drive of the first and second air cylinder portions on the basis of each of detection signals of the first and second detection devices such that, before one bellows comes into a most contracted state, the other bellows is caused to contract from a most expanded state.
Abstract:
A linear compressor is provided. The linear compressor may include a shell having a refrigerant inlet, a cylinder provided within the shell, a piston that reciprocates within the cylinder to compress a refrigerant, a motor assembly that provides a drive force to the piston, a support provided for the magnet assembly, to support an end of a permanent magnet, and a frame engaged with the cylinder to support the motor assembly, and that includes a contact to absorb impact when the piston collides against the support.
Abstract:
Disclosed are a compressor applied to a refrigerator not having a cycle matching function or a refrigerator not including a controller, and capable of controlling a driving of a linear motor by the compressor itself, and a method for controlling the same. The compressor installed at an apparatus including a refrigeration cycle includes: a piston which reciprocates in a cylinder; a linear motor configured to provide a driving force to move the piston; a sensor configured to sense a motor current of the linear motor; and a compressor controller configured to detect information related to a load of the apparatus, in a separated manner from a controller which controls a body of the apparatus, wherein the compressor controller calculates a phase difference between a stroke of the piston and the sensed motor current, and wherein the compressor controller controls a driving of the linear motor in correspondence to the detected load, such that the calculated phase difference is within a range of a reference phase difference.
Abstract:
A pumping unit for a machine to distribute concrete includes a pair of cylinders provided with a relative pumping piston movable linearly for a determinate travel to feed the concrete to a determinate circuit to distribute the concrete; and a hydraulic command circuit operatively connected to both the cylinders, to determine an alternate pumping movement of the relative pumping pistons. The pumping unit includes at least a sensor member operatively associated to at least one of the cylinders in order to detect point-by-point one or more data relating to the operating condition of the pumping piston during its movement for the whole travel. The data includes at least one of position, speed, stress and direction of movement of the relative piston.
Abstract:
A pumping device configured to directly drive a reciprocating member to pump a fluid. In one embodiment, the pumping device comprises a body forming an internal chamber. The reciprocating member may be disposed in the body, the reciprocating member having a first end, a second end, and an axis. The embodiment may further include a drive system magnetically coupled with the reciprocating member, the drive system comprising a first conductive body affixed relative to the reciprocating member. The drive system may be configured to induce a first magnetic field by energizing the first conductive body. The reciprocating member may be configured to induce a second magnetic field in a manner that causes the reciprocating member to move between a first position and a second position to fill and evacuate the internal chamber with a fluid.
Abstract:
A method is disclosed for controlling knocking in a piston compressor and for a piston compressor (1) that is designed to carry out the method. The method is characterized in that, if a knocking noise made by a piston of the piston compressor hitting a cylinder head is detected by means of a structure-borne noise sensor provided on the piston compressor, the piston stroke of the piston compressor is decreased or, if no knocking noise is detected over a predefinable period of time, the piston stroke is increased.
Abstract:
Compressors and methods for determining optimal parking positions for compressor pistons are provided. A method includes performing a current value evaluation for an initial time during operation of a motor of the compressor. Performing the current value evaluation includes measuring a motor current value at the time and comparing the motor current value to an existing optimal parking current value. Performing the current value evaluation further includes modifying the existing optimal parking current value to the motor current value when the motor current value exceeds or is equal to the existing optimal parking current value.
Abstract:
Systems and methods for controlling downhole linear motors to minimize connections to surface equipment. In one embodiment, an ESP system is coupled by a power cable to equipment at the surface of a well. The ESP system includes a linear motor and a reciprocating pump. The motor has a set of position sensors that sense the position of a mover in the motor. Combining circuitry (E.G., XOR gate) combines the outputs of the position sensors into a single composite signal in which signal components corresponding to the position sensors are indistinguishable. A single channel carries the composite signal from the ESP system to the surface equipment. A control system determines a starting position of the motor and determines its subsequent position based on transitions in the composite signal. The motor is then operated based on the position determined from the composite signal.
Abstract:
Hydraulic drive for pressure booster of a high-pressure apparatus, having an electric servo drive effectively connected to electrical supply operable to be regulated and/or switched by measurement signals; a hydraulic pump, pumping a constant volume of working fluid per revolution, and driven by the electric servo drive, and measuring devices for a pressure and/or a pressure trend of the working fluid and/or a pressure and/or a pressure trend of the high-pressure fluid and/or for a position of a piston in the pressure booster. Servo drive is embodied bidirectionally, such that an application of working fluid to the pressure booster is reversible. Control of regulating and/or switching parameters of the electrical supply of the servo drive is based on signals from the measuring devices for the pressure and/or the pressure trend of the working fluid and/or the high-pressure fluid and/or for the position of the piston in the pressure booster.
Abstract:
A pump system for pumping a fluid includes a motor housing, a motor, a rod, a positive displacement pump, a position sensor, and a controller. The motor is located within the motor housing. The rod is connected to and driven by the motor and the positive displacement pump for moving a fluid is driven by the rod. The position sensor produces a rod position signal that is a function of a position of the rod, and the controller produces a drive signal for driving the motor as a function of the rod position signal.