Abstract:
A tethered unmanned aerial vehicle (“UAV”) may be outfitted with a sensor payload for data gathering. The tethered UAV may be tethered to a ground station for constricting the flight space of the UAV while also providing the option for power delivery and/or bidirectional communications. The tethered UAV's flight path may be extended by introducing one or more secondary UAVs that cooperate to extend the horizontal flight path of a primary UAV. The ground station, which may be coupled with the tethered aerial vehicle, may comprise a listening switch configured to determine a condition of the tether such that the supply of power to the tether may be terminated when tether damage or a tether severance is detected.
Abstract:
An aerial unit includes a connecting element arranged to connect a ground unit to the aerial unit. The ground unit may include a connecting element manipulator, for altering an effective length of the connecting element and a ground unit controller for controlling the connecting element manipulator. A positioning unit is arranged to image the aerial unit and to generate metadata about a location of the aerial unit. An interfacing module is provided for coupling a payload to the aerial unit. At least one of the ground unit and the aerial unit may include a controller that is arranged to control, at least in response to the metadata, at least one of a first propeller motor and at least one steering element to affect at least one of the location of the aerial unit and the orientation of the aerial unit.
Abstract:
An aerial unit that includes a first propeller; a second propeller that is spaced apart from the first propeller and is below the first propeller; a propelling module that is configured to rotate the first propeller and the second propeller about a first axis; an apertured duct that comprises a first duct portion and a second duct portion. The first duct portion surrounds the first propeller. The second duct portion surrounds the second propeller. The apertured duct defines at least one aperture at an intermediate area that is positioned below the first propeller and is above the second propeller. The aggregate size of the at least one aperture is at least fifty percent of a size of the intermediate area; a frame; and at least one steering element; an interfacing module arranged to be connected to a connecting element that couples the aerial unit to a ground unit. The propelling module and the duct are connected to the frame.
Abstract:
The respective motors of the drone (10) can be controlled to rotate at different speeds in order to pilot the drone both in attitude and speed. A remote control appliance produces a command to turn along a curvilinear path, this command comprising a left or right turning direction parameter and a parameter that defines the radius of curvature of the turn. The drone receives said command and acquires instantaneous measurements of linear velocity components, of angles of inclination, and of angular speeds of the drone. On the basis of the received command and the acquired measurements, setpoint values are generated for a control loop for controlling motors of the drone, these setpoint values controlling horizontal linear speed and inclination of the drone relative to a frame of reference associated with the ground so as to cause the drone to follow curvilinear path (C) at predetermined tangential speed (u).
Abstract:
A system and method to control the stability and direction of a quad tilt vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) by manipulating the rotational speed of propellers at each rotor while simultaneously tilting the rotors in a 45 degree configuration related to a central axis for directional control. Each rotor is attached to a tilting mechanism configured to be symmetrically aligned at a 45 degree angle from a central axis to manipulate a directional angle of each rotor along a first and second axis. The first and fourth rotors are aligned on the first axis while the second and third rotors are aligned on the second axis. A controller includes a first control loop for manipulating the rotational speed of the propellers to control the aircraft balance and a second control loop for controlling lateral movement by tilting the rotors along the first and second axis.
Abstract:
An existing bottom-adjustable propeller-type flying object requires a device having a complex structure constructed through the combination of various components such as a servo, a control plate, and a hinge to control the rotor pitch at every moment and operate an adjustable blade for flight control. The bottom-adjustable propeller-type flying object of the disclosure includes a circular frame with a fixing plate and a protective plate installed at a lower portion of a shaft of a power propeller mounted to the central shaft, and an adjusting motor having an adjustable propeller. The flying object moves up or down by using force of the wind generated downward due to the rotation of the power propeller. The flying object makes a hovering flight, and leftward, rightward, forward, and backward flights by using the force of the wind generated due to the rotation of the adjustable propellers mounted on two adjusting motors.
Abstract:
An unmanned aerial vehicle selectively formed of high strength composite structural part portions and lightweight aerodynamic foam portions to provide a low-cost and lightweight UAV that comports with export, civil airspace, and safety regulations. To further to reduce an overall weight of the UAV, mechanical elements are designed to provide multiple functionalities. Structural elements may be manufactured in same or similar non-specialized processes, and non-structural elements manufactured in same or similar non-specialized processes, reducing overall manufacturing costs. Materials and bonding elements are selected to provide frangibility and yet maintain normal flight structural integrity.
Abstract:
A flying vehicle in accordance to an embodiment of the present invention includes a propeller control mechanism for flying the vehicle. The propeller control mechanism includes a propeller having a center shaft for connecting to the drive shaft; first and second propeller blades extending from the center shaft; and a control mechanism including a first linkage connecting the center shaft to the first propeller blade and a second linkage connecting the center shaft to a region defined on the propeller, wherein a change in a driving torque of the drive shaft causes the first linkage and the second linkage to change the pitch and height of the propeller blades while substantially unchanging the tip path plane of the propeller blades.
Abstract:
A torque production vehicle includes a plenum body having a wall with a central port and a radial port formed within the wall, an impeller disposed within the plenum body to move air through the central port, an engine coupled to the impeller to rotate the impeller about an axis, at least one arm coupled to the plenum body, and a plurality of foils disposed in the radial port to direct air about the plenum body to provide a torque force about the plenum body.
Abstract:
A manipulator arm system on a ducted air-fan UAV is disclosed herein. The target site may be accurately located by the UAV, and the manipulator system may accurately locate the payload at the target site. The manipulator arm may select tools from a toolbox located on-board the UAV to assist in payload placement or the execution of remote operations. The system may handle the delivery of mission payloads, environmental sampling, and sensor placement and repair.