Abstract:
A technique is directed to launching an unmanned aerial vehicle (UAV). The technique involves positioning a UAV launcher over a ground location. The technique further involves installing, after the UAV launcher is positioned over the ground location and prior to launching the UAV, an anchor into the ground location to anchor the UAV launcher to the ground location. The technique further involves operating, after the UAV launcher is anchored to the ground location, the UAV launcher to impart launching force onto the UAV to launch the UAV, the anchor holding the UAV launcher substantially in place at the ground location to minimize energy loss as the UAV launcher imparts launching force onto the UAV. In some arrangements, the UAV launcher is capable of pivoting while remaining anchored between launches to accommodate changes in wind direction while maintaining substantial connection to the ground location for enhanced consistency and performance.
Abstract:
Embodiments of the present invention provide improvements to UAV launching systems. The disclosed launching system eliminates the use of hydraulic fluid and compressed nitrogen or air by providing an electric motor-driven tape that causes movement of a shuttle along a launcher rail.
Abstract:
Various embodiments of the present disclosure provide an apparatus configured to automatically retrieve, service, and launch an aircraft. For retrieval, the aircraft drops a weighted cable, and pulls it at low relative speed into a broad aperture of the apparatus. In certain instances, the cable is dragged along guiding surfaces of the apparatus into and through a slot until its free end is captured. The aircraft becomes anchored to the apparatus, and is pulled downward by the cable into a receptacle. Guiding surfaces of the receptacle adjust the position and orientation of a probe on the aircraft, directing the probe to mate with a docking fixture of the apparatus. Once mated, the aircraft is automatically shut down and serviced. When desired, the aircraft is automatically started and tested in preparation for launch, and then released into free flight. A full ground-handling cycle is thus accomplished with a simple, economical apparatus.
Abstract:
This disclosure pertains to the field of small-unmanned aerial vehicles (UAVs). The delta wing vehicle consists of an isosceles triangular shaped lifting body milled from Styrofoam. The longitudinal axis is approximately 65% of the lateral axis. The horizontal wing projections, or tiplets, are attached to the main lifting body at an approximately 10 degree upward angle from horizontal, have a 30 degree sweep back leading edge, and each one comprises 5% of the total wing area. The airfoil is a rhomboid or diamond shape. The chord is swept back at a 45-degree angle from the longitudinal centerline. The airfoil is symmetrical about the longitudinal center. The aircraft is controlled by a set of combined elevator/aileron surfaces (elevons) at the rear as well as a vertical stabilizer/rudder combination. This resulting lightweight UAV can make flat (unbanked) unbanked turns, fly in high winds, and has superior flexibility in payload capability.
Abstract:
The self-sustaining drone aircraft freight and observation system (5) comprises a fleet of jet-powered drone aircraft (10) designed to carry freight (12) only. The drones (10) operate from a separate airfield in outlying areas to decrease land costs and to avoid disturbing residential and business areas. Navigation is automated using guidance from GPS satellites (16), and the aircraft (10) can be assisted by a hydraulic catapult (13) during takeoff to reduce the fuel payload. The observation component (18) includes sensors that can observe weather conditions and emergency signals from boats, ships and other sources. The system (5) may include a large-scale energy production center and multi-acre vegetable, herb and flower production center (26). The energy production center includes solar panels (30), fuel cells (38), and batteries (44). Thus, the system (5) does not need to be connected to the public utility electrical grid.
Abstract:
An unmanned aerial vehicle including a controller operating in a search mode of operation where a receiver of an acquisition sensor searches for a target and causes flight control surfaces to guide the vehicle in a downward spiral path, a terminal mode of operation where the acquisition sensor detects a target and causes flight control surfaces to direct the vehicle toward the target, and an activation mode of operation where a trigger sensor detects a target within a predetermined distance to the vehicle and the controller activates a responder.
Abstract:
A man-portable unmanned aerial system launcher (UAS) launcher includes a rail assembly having an internal track and a carriage assembly having a base configured to translate within the internal track. The carriage assembly also includes a cradle configured to support a UAS and a bracket configured to support the cradle above the base. The UAS launcher includes a launch control system configured to secure the carriage assembly in the launch-ready position until the launch control system receives a launch signal. The UAS launcher also includes one or more elastic members configured to engage the carriage assembly and the rail assembly. Once the carriage assembly is translated to the launch-ready position, strain is applied to the carriage assembly by the one or more elastic members. Release of the carriage assembly enables force generated by strain of the elastic members to propel the carriage assembly toward a launch position.
Abstract:
A method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10). The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Abstract:
An aircraft launcher includes a base frame, a first sliding frame that slides with respect to the base frame, a second sliding frame that slides with respect to the first sliding frame, an aircraft support located on the second sliding frame, and a drive apparatus adapted to slide at least one of the first sliding frame and the second sliding frame with respect to the base frame.
Abstract:
A torque production vehicle includes a plenum body having a wall with a central port and a radial port formed within the wall, an impeller disposed within the plenum body to move air through the central port, an engine coupled to the impeller to rotate the impeller about an axis, at least one arm coupled to the plenum body, and a plurality of foils disposed in the radial port to direct air about the plenum body to provide a torque force about the plenum body.